
Refactoring the Ht://Dig Search Engine

J. Neal Richter
RightNow Technologies

40 Enterprise Blvd.
Bozeman, MT 59718

nealr@rightnow.com

Anthony Arnone
RightNow Technologies

40 Enterprise Blvd.
Bozeman, MT 59718

aarnone@rightnow.com

ABSTRACT
In this paper, we highlight the trials and travails of updating
an antiquated and monolithic but full featured web spider
and search engine in order to align it more closely with the
needs of modern users.

Categories and Subject Descriptors
H.3.1 [Information Systems]: Content Analysis and In-
dexing—indexing methods; H.3.3 [Information Systems]:
Information search and retrieval—search process, query for-
mulation

Keywords
Search, search engines, web spiders, Lucene

1. INTRODUCTION
This is a summary of the effort to bring the well known

ht://Dig package up to date. The Hiding 4.0 package has
three major parts, the spidering/network module, the index-
ing storage module, and the query processing module, plus
numerous utilities. In addition to removing object spaghetti
code and cruft that build up over the years, we replaced the
internal storage/query engine and HTML parser as well as
converted the package into a usable ’C’ shared library.

2. HISTORY AND DESIGN PROBLEMS
In 1995 Andrew Scherpbier began building ht://Dig for

use as a search engine and spider at San Diego State Uni-
versity. By the late 90s HtDig had been incorporated into
many Linux distributions and was commonly used on many
websites. A group of about 20 hobby developers lead by
Geoff Hutchison and Gilles Detillieux added to functionality
and maintained the software. In 2003 and 2004 RightNow
Technologies began utilizing the software for a generic CGI-
based search engine. During this time the group became
more formal with a set of by-laws and official membership
roster, as well as changing the license of HtDig to the LGPL
from the GPL. HtDig 3.2 development proceeded and a sub-
project called libHtDig was developed to enable its use in
other software as a shared library.

HtDig 3.2 suffers from a number of design problems, while
at the same time being quite flexible for users. Like many

Copyright is held by the author/owner(s).
WWW 2007, May 8–12 Banff, Canada
.

other software projects it began to be more spaghetti-like in
its structure as featurettes were hacked into place. While im-
plemented in C++, the code base does not use OOP meth-
ods or design patterns very well. It’s core code was written
at a time when many useful components like web-spiders
and general purpose IR engines did not exist in easy to inte-
grate forms. The general momentum of the code base often
precluded utilization of useful external libraries (networking
libraries for example). ”If it ain’t broke don’t fix it” caused
a level of code stagnation and became unsustainable.

3. MODERNIZATION
In 2006 we began an effort to reform HtDig by replac-

ing sub-components with emerging standard libraries and
further remake HtDig into a usable shared library for the
searching and sputtering of documents. The chief advantage
of HtDig over projects like Natch is that it is smaller in com-
parison and simpler to set up as it requires few supporting
libraries or environments, nor any advanced Apache/Tomcat
needs. This places HtDig in the niche use for website ad-
ministrators and programmers who do not want to devote
lots of effort into implementing a more complex search en-
gine package. It also has the benefit of a decade of users and
developers adding a rich set of configuration options. This is
not to say that it is superior to packages like Natch or SLR,
as both of those packages are more active in comparison as
well as far more scalable in documents and search load.

3.1 Replacing DB based index
HtDig originally used Berkeley DB as its storage solu-

tion. The major problem with the old implementation was
that the inverted index schema used one BDB entry/row
per word per document per position. This led to index bloat
and long processing times of some utility functions. In addi-
tion this schema was not easily extensible to add additional
sorted fields for instance.

Rather than recode the index, we chose to migrate to us-
ing CLucene and the core storage/query engine. Instead
of single word insertion, documents are represented as sets
of words in multiple fields. Internally, the index structure
is arranged as one entry for each unique word, regardless
of how many times or in how many documents it shows up.
CLucene allows for easy and extensive customization. Usage
of BDB was retained to store the list of documents contained
in the CLucene index, allowing straight-forward respidering
of the documents.

A special API was written for HtDig that would allow
documents to be specified as a hash of field names and asso-



ciated text, allowing for flexible addition of document fields.
Everything from existing text analyzers to the scoring func-
tion code were replaced with a CLucene functions.

3.2 UTF-8 Compliance
HtDig originally used an single-byte text encoding, this

made supporting non latin-1 based languages impossible.
In addition to auditing the code and reworking all code that
assumed ”char *” strings, we removed the existing HTML
parser and replaced it with HTMLTidy to support pars-
ing of UTF-8 documents. We used the more stable UCS2
’build’ of CLucene, so we also imported a set of UTF-8 to
UCS2 converters to insert documents. The other major ben-
efit of HTMLTidy is that it gracefully handles malformed
HTML/XML and supplies the parsed document in an easily
usable DOM-like tree.

4. FEATURE ADDITIONS
Along with the more general improvements to the existing

features of HtDig, several new features have been added that
provide useful ways to interact with the search index.

4.1 Lucene Queries
CLucene supports the construction of very rich multi-field

queries as well as supporting the chaining of filtering steps.
HtDig allows a search query to be submitted as a group of
optional, required, and forbidden sub-queries. Lucene’s sup-
port of these features as well as the indexing of text in both
stemmed and unstemmed form allowed the removal of many
hackish portions of the HtDig codebase that in comparison
performed badly.

4.2 Single Document Handling
Single documents can be inserted directly into the search-

able index, much like Solr. When inserted, the document
can be marked as spiderable or not, in which case it will be
downloaded and parsed just as a regular document during
the next spider run. If the document is not marked spi-
derable, it is inserted directly - making it searchable, yet
ignored during future spider runs.

Conversely, sometimes it is convenient to spider and store
a single document/URL while using the URL rewriting and
normalization engine. This would allow a programmer to
build a custom spidering engine independent of the internal
implementation of HtDig.

4.3 Removed Features
Originally, several different auxiliary databases were avail-

able for ”fuzzy” searching though the htfuzzy tool. Algo-
rithms like synonyms, metaphone and soundex have been re-
moved completely, the endings database has been subsumed
into the main CLucene index as a searchable stemmed field,
and the accents database is no longer necessary, being re-
quired only in the context of an ASCII-only index. Also
removed are some of the database management tools like
htmerge, htdump, and htload. The htmerge tool was used
to merge BDB indexes created during different runs of htdig
into one.

Gone also is the CGI based searching executable that was
part of ht://Dig. This has been replaced with a simple PHP
API that provides the same functionality. This conforms
better to the idea of using HtDig as a utility library.

5. FUTURE DIRECTIONS
HtDig is still a work in progress. Many features have

yet to be implemented, and some of the previously removed
features could stand to be replaced with modern analogues
from the rich set of advanced Lucene code. This will help
keep HtDig useful in its intended niche.

5.1 Tool Collection
Some of the tools removed from ht://Dig should be rein-

corporated back into the program, as they provide useful
utilities. Some possibilities are htmerge and htdump. These
could be implemented as a nice front end GUI for database
maintenance. Features could include things like automatic
URL blacklisting and manual field manipulation. Note that
tools like Luke allow examination of a Lucene index, yet
they do not perform all useful index editing tasks.

5.2 External APIs
Continuing in the vein of standardization, HtDig’s exter-

nal APIs should be updated even further to a well known,
standardized specification. A standardized RSS based API
like A9’s OpenSearch provides a good example for an acces-
sible search utility.

Also, an XML based configuration feature would allow for
easier and more accessible customization of the spidering
process, along with streamlining communications for pro-
grams that incorporate HtDig as a utility library.

5.3 Usage with Solr
One of the most useful portions of HtDig code is the battle

tested spidering and network code. One potential idea is to
instrument the spider to feed a Solr-based servlet engine
with Documents via XML. Solr in many respects is more
powerful that using Lucene alone, yet still suffers from the
drawback that it has no tightly integrated spider.

5.4 Usage with Nutch
Nutch is a very active daemon based search and spidering

engine that supports high scalability. One area of interest to
us would be to implement a nearly identical Lucene schema
to Nutch. This could potentially allow a user an upgrade
path to a more scalable solution without necessitating the
rebuilding of their entire index. HtDig users that have be-
come comfortable and familiar with the configuration of the
HtDig and its spider would still be able to use this knowl-
edge while getting the benefits of a high capacity engine like
Nutch.

6. ACKNOWLEDGMENTS
We would like to acknowledge Ben van Klinken, for his

work on CLucene as well as Doug Cutting for his work on
Lucene. It also can not be understated how much work that
Gilles and Geoff did for HtDig’s code and users for many
years before moving on to other pursuits.

7. LINKS
HtDig Project homepage: http://www.htdig.org/
Lucene Project homepage: http://lucene.apache.org/
CLucene Project homepage: http://clucene.sourceforge.net/
HTMLTidy Project homepage: http://tidy.sourceforge.net/
Solr Project homepage: http://lucene.apache.org/solr/
Nutch Project homepage: http://lucene.apache.org/nutch/


