
Unicon Language Reference

Clinton Jeffery, Shamim Mohamed, Jafar Al Gharaibeh

Unicon Technical Report: #8b

September 6, 2013

Abstract

Unicon is a very high level application programming language with particular strengths

in the areas of complex data structure and algorithm development, text processing,

graphics, network I/O, and concurrency. This language reference is adapted for online

documentation purposes from Appendix A of “Programming with Unicon”, by Jeffery,

Mohamed, Al Gharaibeh, Pereda, and Parlett.

Unicon Project

http://unicon.org

University of Idaho

Department of Computer Science
Moscow, ID, 83844, USA

1 Introduction

Unicon is expression-based. Nearly everything is an expression, including the common control

structures such as while loops. The only things that are not expressions are declarations for

procedures, methods, variables, records, classes, and linked libraries.

In the reference, types are listed for parameters and results. If an identifier is used, any type

is allowed. For results, generator expressions are further annotated with an asterisk (*) and non-

generators that can fail are annotated with a question mark (?). A question mark by itself (short

for null?) denotes a predicate whose success or failure is what matters; the predicate return value

(&null) is not significant.

2 Immutable Types

Unicon’s immutable types are integers, real numbers, strings, and csets. Values of these types

cannot change. Operators and functions on immutable types produce new values rather than

modify existing ones. The simplest expressions are literal values, which occur only for immutable

types. A literal value evaluates to itself.

2.1 Integer

Integers are of arbitrary precision. Decimal integer literals are contiguous sequences of the digits

0 through 9, optionally preceded by a + or - sign. Suffixes K, M, G, T, or P multiply a literal by

1024, 1024ˆ2, 1024ˆ3, 1024ˆ4, and 1024ˆ5, respectively.

Radix integer literals use the format radixRdigits, where radix is a base in the range 2 through

36, and digits consists of one or more numerals in the supplied radix. After values 0-9, the letters

A-Z are used for values 10-35. Radix literals are case insensitive, unlike the rest of the language,

so the R may be upper or lower case, as may the following alphabetic digits.

2.2 Real

Reals are double-precision floating-point values. Real decimal literals are contiguous sequences of

the digits 0 through 9, with a decimal point (a period) somewhere within or at either end of the

digits. Real exponent literals use the format numberEinteger ; E may be upper or lower case.

2.3 String

Strings are sequences of 0 or more characters, where a character is a value with a platform-

dependent size and symbolic representation. On platforms with multi-byte character sets, multiple

Icon characters represent a single symbol using a platform-dependent encoding. String literals

consist of 0 or more characters enclosed in double quotes. A string literal may include escape

sequences that use multiple characters to encode special characters. The escape sequences are

given in Table A-1. Incomplete string literals may be continued on the next line if the last character

on a line is an underscore (). In that case, the underscore, the newline, and any whitespace at

the beginning of the next line are not part of the string literal.

1

Table A-1
Escape Codes and Characters

Code Character Code Character Code Character Code Character
\b backspace \d delete \e escape \f form feed

\l line feed \n newline \r carriage return \t tab

\v vertical tab \’ quote \” double quote \\ backslash

\ooo octal \xhh hexadecimal \ˆx Control-x

2.4 Cset

Csets are sets of 0 or more characters. Cset literals consist of 0 or more characters enclosed

in single quotes. As with strings, a cset literal may include escape sequences that use multiple

characters to encode special characters.

3 Mutable Types

Mutable types’ values may be altered. Changes to a mutable value affect its allocated memory

or its associated OS resource. Mutable types include lists, tables, sets, records, objects, and files,

including windows, network connections and databases. These types are described in the entries

for constructors that create them. Structure types hold collections of elements that may be of

arbitrary, mixed type.

3.1 List

Lists are dynamically sized, ordered sequences of zero or more values. They are constructed by

function, by an explicit operator, or implicitly by a call to a variable argument procedure. They

change size by stack and queue functions.

3.2 Table

Tables are dynamically sized, unordered mappings from keys to elements. They are constructed

by function. The keys may be of arbitrary, mixed type.

3.3 Set

Sets are unordered collections. They are constructed by function.

3.4 Record

Records are ordered, fixed length sequences of elements accessed via named fields.

3.5 Object

Objects are ordered, fixed length sequences of elements that may be accessed via named fields

and methods. Accessing an object’s fields from outside its methods (using it as a record) is legal

but deprecated.

2

3.6 File

Files are system resources corresponding to data on secondary storage, areas on users’ displays,

network connections, or databases. Operations on files cause input or output side effects on the

system outside of the program execution.

4 Variables

Variables are names for locations in memory where values can be stored. Values are stored in

variables by assignment operators. A variable name begins with a letter or underscore, followed

by zero or more letters, underscores, or digits. A variable name cannot be the same as one of

Icon’s reserved words, nor can it be the same as one of Icon’s keywords if it follows an adjacent

ampersand character. Variables can hold values of any type, and may hold different types of

values at different times during program execution.

There are four kinds of variables: global, local, static, and class. Global, local, and static

variables are declared by introducing one of the reserved words (global, local, or static) followed by

a comma-separated list of variable names. Global variables are declared outside of any procedure

or method body, while local and static variables are declared at the beginning of procedure and

method bodies. Local and static variable names may be followed by an assignment operator and

an initial value; otherwise variables other than procedure and class names begin with the value

&null.
Aliasing occurs when two or more variables refer to the same value, such that operations on

one variable might affect the other. Aliasing is a common source of program bugs. Variables

holding integer, real, string, or cset values are never aliased, because those types are immutable.

4.1 Global

Global variables are visible everywhere in the program, and exist at the same location for the entire

program execution. Declaring a procedure declares a global variable initialized to the procedure

value that corresponds to the code for that procedure.

4.2 Local

Local variables exist and are visible within a single procedure or method only for the duration of a

single procedure invocation, including suspensions and resumptions, until the procedure returns,

fails, or is vanquished by the return or failure of an ancestor invocation while it is suspended.

Undeclared variables in any scope are implicitly local, but this dangerous practice should be

avoided in large programs.

Variables that are declared as parameters are local variables that are preinitialized to the

values of actual parameters at the time of a procedure or method invocation. The semantics of

parameter passing are the same as those of assignment.

3

4.3 Static

Static variables are visible only within a single procedure or method, but exist at the same

location for the entire program execution. The value stored in a static variable is preserved

between multiple calls to the procedure in which it is declared.

4.4 Class

Class variables are visible within the methods of a declared class. Class variables are created for

each instance (object) of the class. The lifespan of class variables is the life span of the instance

to which they belong. The value stored in a class variable is preserved between multiple calls to

the methods of the class in which it is declared.

5 Keywords

Keywords are names with global scope and special semantics within the language. They begin with

an ampersand character. Some keywords are names of common constant values, while others are

names of variables that play a special role in Icon’s control structures. The name of the keyword

is followed by a : if it is read-only, or a := if it is a variable, followed by the type of value the

keyword holds.

&allocated : integer* report memory use

&allocated generates the cumulative number of bytes allocated in heap, static, string, and block

regions during the entire program execution.

&ascii : cset ASCII character set

&ascii produces a cset corresponding to the ASCII characters.

&clock : string time of day

&clock produces a string consisting of the current time of day in hh:mm:ss format. See also

keyword &now.

&collections : integer* garbage collection activity

&collections generates the number of times memory has been reclaimed in heap, static, string,

and block regions.

&column : integer source code column

&column returns the source code column number of the current execution point. This is especially

useful for execution monitoring.

&cset : cset universal character set

&cset produces a cset constant corresponding to the universal set of all characters.

¤t :co-expression current co-expression

¤t produces the co-expression that is currently executing.

&date : string today’s date

4

&date produces the current date in yyyy/mm/dd format.

&dateline : string time stamp

&dateline produces a human-readable time stamp that includes the day of the week, the date,

and the current time, down to the minute.

&digits : cset digit characters

&digits produces a cset constant corresponding to the set of digit characters 0-9.

&dump := integer termination dump

&dump controls whether the program dumps information on program termination or not. If

&dump is nonzero when the program halts, a dump of local and global variables and their values

is produced.

&e : real natural log e

&e is the base of the natural logarithms, 2.7182818...

&error := integer fail on error

&error controls whether runtime errors are converted into expression failure. By assigning to this

keyword, error conversion can be enabled or disabled for specific sections of code. The integer

&error is decremented by one on each error, and if it reaches zero, a runtime error is generated.

Assigning a value of -1 effectively disables runtime errors indefinitely. See also &syserr.

&errornumber : integer? runtime error code

&errornumber is the error number of the last runtime error that was converted to failure, if there

was one.

&errortext : string? runtime error message

&errortext is the error message of the last error that was converted to failure.

&errorvalue : any? offending value

&errorvalue is the erroneous value of the last error that was converted to failure.

&errout : file standard error file

&errout is the standard error file. It is the default destination to which runtime errors and program

termination messages are written.

&eventcode := integer program execution event

&eventcode indicates the kind of behavior that occurred in a monitored program at the time of

the most recent call to EvGet(). This keyword is only supported under interpreters built with

execution monitoring support.

&eventsource := co-expression source of program execution events

&eventsource is the co-expression that transmitted the most recent event to the current program.

This keyword is null unless the program is an execution monitor. See also &source. Under a

monitor coordinator, &eventsource is the coordinator and global variable Monitored is the target

program.

5

&eventvalue := any program execution value

&eventvalue is a value from the monitored program that was being processed at the time of the

last program event returned by EvGet(). This keyword is only supported under interpreters built

with execution monitoring support.

&fail : none expression failure

&fail never produces a result. Evaluating it always fails.

&features : string* platform features

&features generates strings that indicate the non-portable features supported on the current plat-

form.

&file : string? current source file

&file is the name of the source file for the current execution point, if there is one. This is especially

useful for execution monitoring.

&host : string host machine name

&host is a string that identifies the host computer Icon is running on.

&input : file standard input file

&input is a standard input file. It is the default source for file input functions.

&lcase : cset lowercase letters

&lcase is a cset consisting of the lowercase letters from a to z.

&letters : cset letters

&letters is a cset consisting of the upper and lowercase letters A-Z and a-z.

&level : integer call depth

&level gives the nesting level of the currently active procedure call. This keyword is not supported

under the optimizing compiler, iconc.

&line : integer current source line number

&line is the line number in the source code that is currently executing.

&main : co-expression main task

&main is the co-expression in which program execution began.

&now : integer current time

&now produces the current time as the number of seconds since the epoch beginning 00:00:00

GMT, January 1, 1970. See also &clock

&null : null null value

&null produces the null value.

&output : file standard output file

&output is the standard output file. It is the default destination for file output.

6

&phi : real golden ratio

&phi is the golden ratio, 1.618033988...

&pi : real pi

&pi is the value of pi, 3.141592653...

&pos := integer string scanning position

&pos is the position within the current subject of string scanning. It is assigned implicitly by

entering a string scanning environment, moving or tabbing within the environment, or assigning

a new value to &subject. &pos may not be assigned a value that is outside the range of legal

indices for the current &subject string.

&progname := string program name

&progname is the name of the current executing program.

&random := integer random number seed

&random is the seed for random numbers produced by the random operator, unary ?. It is

assigned a different sequence for each execution but may be explicitly set for reproducible results.

®ions : integer* region sizes

®ions produces the sizes of the static region, the string region, and the block region. The first

result is zero; it is included for backward compatibility reasons.

&source : co-expression invoking co-expression

&source is the co-expression that activated the current co-expression.

&storage : integer* memory in use

&storage gives the amount of memory currently used within the static region, the string region,

and the block region. The first result is always zero and is included for backward compatibility

reasons.

&subject := string string scanning subject

&subject holds the default value used in string scanning and analysis functions. Assigning to

&subject implicitly assigns the value 1 to &pos.

&syserr := integer halt on system error

&syserr controls whether a system error causes execution to halt. System errors cause expression

failure by default. If &syserr is set to a non-zero value, system errors are converted to runtime

errors and halt execution with an error traceback.

&time : integer elapsed time

&time gives the number of milliseconds of CPU time that have elapsed since the program execution

began. For wall clock time see &now or &clock.

&trace := integer trace program

7

&trace gives the number of nesting levels to which program execution will be traced. 0 means no

tracing. A negative value traces to an infinite depth. &trace is set outside the program using the

TRACE environment variable or the -t compiler option.

&ucase : cset upper case letters

&ucase is a cset consisting of all the upper case letters from A to Z.

&version : string version

&version is a string that indicates which version of Unicon or Icon is executing.

5.1 Graphics keywords

Several of the graphics keywords are variables with assignment restricted to value of a particular

type or types. Graphics keywords are more fully described in [Griswold98].

&col : integer mouse location, text column

&col is the mouse location in text columns during the most recent Event(). If &col is assigned,

&x gets a corresponding pixel location in the current font on &window.

&control : integer control modifier flag

&control produces the null value if the control key was pressed at the time of the most recently

processed event, otherwise &control fails.

&interval : integer time since last event

&interval produces the time between the most recently processed event and the event that preceded

it, in milliseconds.

&ldrag : integer left mouse button drag

&ldrag produces the integer that indicates a left button drag event.

&lpress : integer left mouse button press

&lpress produces the integer that indicates a left button press event.

&lrelease : integer left mouse button release

&lrelease produces the integer that indicates a left button release event.

&mdrag : integer middle mouse button drag

&mdrag produces the integer that indicates a middle button drag event.

&meta : integer meta modifier flag

&meta produces the null value if the meta (Alt) key was pressed at the time of the most recently

processed event, otherwise &meta fails.

&mpress : integer middle mouse button press

&mpress produces the integer that indicates a middle button press event.

&mrelease : integer middle mouse button release

&mrelease produces the integer that indicates a middle button release event.

8

&pick : string* pick 3D objects

&pick generates the object IDs selected at point (&x,&y) at the most recent Event(), if the event

was read from a 3D window with the attribute pick=on.

&rdrag : integer right mouse button drag

&rdrag produces the integer that indicates a right button drag event.

&resize : integer window resize event

&resize produces the integer that indicates a window resize event.

&row : integer mouse location, text row

&row is the mouse location in text rows during the most recent Event(). If &row is assigned, &y
gets a corresponding pixel location in the current font on &window.

&rpress : integer right mouse button press

&rpress produces the integer that indicates a right button press event.

&rrelease : integer right mouse button release

&rrelease produces the integer that indicates a right button release event.

&shift : integer shift modifier flag

&shift produces the null value if the shift key was pressed at the time of the most recently processed

event, otherwise &shift fails.

&window : window default window

&window is the default window argument for all window functions. &window may be assigned

any value of type window.

&x : integer mouse location, horizontal

&x is the horizontal mouse location in pixels during the most recent Event(). If &x is assigned,

&col gets a corresponding text coordinate in the current font on &window.

&y : integer mouse location, vertical

&y is the vertical mouse location in pixels during the most recent Event(). If &y is assigned,

&row gets a corresponding text coordinate in the current font on &window.

6 Control Structures and Reserved Words

Unicon has many reserved words. Some are used in declarations, but most are used in control

structures. This section summarizes the syntax and semantics introduced by all the reserved words

of the language. The reserved word under discussion is written in a bold font. The surrounding

syntax uses square brackets for optional items and an asterisk for items that may repeat.

break expr exit loop

The break expression exits the nearest enclosing loop. expr is evaluated and treated as the result

of the entire loop expression. If expr is another break expression, multiple loops will be exited.

9

expr1 to expr2 by expr3 step increment

The by reserved word supplies a step increment to a to-expression (the default is 1).

case expr of { ? } select expression

The case expression selects one of several branches of code to be executed.

class name [: superclass]* (fields) methods [initially] end class declaration

The class declaration introduces a new object type into the program. The class declaration may

include lists of superclasses, fields, methods, and an initially section.

create expr create co-expression

The create expression produces a new co-expression to evaluate expr.

critical x : expr serialize on x

The critical expression serializes the execution of expr on value x . Value x must be a mutex or

protected object that has a mutex. The critical section causes x to be locked before evaluating

expr and unlocked afterward. Breaking, returning or failing out of expr does not automatically

unlock x .

default : expr default case branch

The default branch of a case expression is taken if no other case branch is taken.

do expr iteration expression

The do reserved word specifies an expression to be executed for each iteration of a preceding while,
every, or suspend loop (yes, suspend is a looping construct).

if expr1 then expr2 else expr3 else branch

The else expression is executed if expr1 fails to produce a result.

end end of declared body

The reserved word end signifies the end of a procedure, method, or class body.

every expr1 [do expr2] generate all results

The every expression always fails, causing expr1 to be resumed for all its results.

fail produce no results

The fail reserved word causes the enclosing procedure or method invocation to terminate imme-

diately and produce no results. The invocation may not be resumed. See also the keyword &fail,
which produces a less drastic expression failure. fail is equivalent to return &fail

global var [, var]* declare global variables

Reserved word global introduces one or more global variables.

if expr then expr2 [else expr3] conditional expression

The if expression evaluates expr2 only if expr1 produces a result.

import name [, name]* import package

10

The import declaration introduces the names from package name so that they may be used without

prefixing them with the package name.

initial expr execute on first invocation

The initial expression is executed the first time a procedure or method is invoked.

initially [(parameters)] initialize object

The initially section defines a special method that is invoked automatically when an object is

created. If the initially section has declared parameters, they are used as the parameters of the

constructor for objects of that class.

invocable procedure [, procedure]* allow string invocation

invocable all allow string invocation

The invocable declaration indicates that procedures may be used in string invocation.

link filename [, filename]* link code module

The link declaration directs that the code in filename will be added to the executable when this

program is linked. filename may be an identifier or a string literal file path.

local var [:=initializer] [, var [:= initializer]]* declare local variables

The local declaration introduces local variables into the current procedure or method. Variable

declarations must be at the beginning of a procedure or method.

method name (params) body end declare method

The method declaration introduces a procedure that is invoked with respect to instances of a

given class. The params and body are as in procedures, described below.

next iterate loop

The next expression causes a loop to immediate skip to its next iteration.

not expr negate expression failure

The not expression fails if expr succeeds, and succeeds (producing null) if expr fails.

case expr of { ? } introduce case branches

The of reserved word precedes a special compound expression consisting of a sequence of case

branches of the form expr : expr. Case branches are evaluated in sequence until one matches the

expression given between the word case and the of.

package name declare package

The package declaration segregates the global names in the current source file. In order to refer to

them, client code must either import the package, or prepend name . (the package name followed

by a period) onto the front of a name in the package.

procedure name (params) body end declare procedure

The procedure declaration specifies a procedure with parameters and code body. The parameters

are a comma-separated list of zero or more variable names. The last parameter may be suffixed

by [] to indicate that following parameters will be supplied to the procedure in a list. The body

11

is an optional sequence of local and static variable declarations, followed by a sequence of zero or

more expressions.

record name (fields) declare record

The record declaration introduces a new record type into the program.

repeat expr infinite loop

The repeat expression introduces an infinite loop that will reevaluate expr forever. Of course,

expr may exit the loop or terminate the program in any number of ways.

return expr return from invocation

The return expression exits a procedure or method invocation, producing expr as its result. The

invocation may not be resumed.

static var [, var]* declare static variables

The static declaration introduces local variables that persist for the entire program execution

into the current procedure or method body. Variable declarations must be at the beginning of a

procedure or method.

suspend expr [do expr] produce result from invocation

The suspend expression produces one or more results from an invocation for use by the calling

expression. The procedure or method may be resumed for additional results if the calling expres-

sion needs them. Execution in the suspended invocation resumes where it left off, in the suspend
expression. A single evaluation of a suspend expression may produce multiple results for the caller

if expr is a generator. An optional do expression is evaluated each time the suspend is resumed.

if expr1 then expr2 conditional expression

The expr2 following a then is evaluated only if expr1 following an if succeeds. In that case, the

result of the whole expression is the result of expr2.

thread expr create thread

The thread expression creates and launches a concurrent thread to evaluate expr.

expr1 to expr2 generate arithmetic sequence

The to expression produces the integer sequence from expr1 to expr2.

until expr1 [do expr2] loop until success

The until expression loops as long as expr1 fails.

while expr1 [do expr2] loop until failure

The while expression loops as long as expr1 succeeds.

12

7 Operators and Built-in Functions

Icon’s built-ins operators and functions utilize automatic type conversion to provide flexibility

and ease of programming. Automatic type conversions are limited to integer, real, string, and

cset data types. Conversions to a ”number” will convert to either an integer or a real, depending

whether the value to be converted has a decimal. Conversions between numeric types and csets

go through an intermediate conversion to a string value and are not generally useful.

Indexes start at 1. Index 0 is the position after the last element of a string or list. Negative

indexes are positions relative to the end. Subscripting operators and string analysis functions can

take two indices to specify a section of the string or list. When two indices are supplied, they

select the same string section whether they are in ascending or descending order.

7.1 Operators

The result types of operators are the same as the operand types except as noted.

7.2 Unary operators

! x : any* generate elements

The generate operator produces the elements of x. If x is a string variable or refers to a structure

value, the generated elements are variables that may be assigned. !i is equivalent to (1 to i)
for integer i. List, record, string, and file elements are generated in order, with string elements

consisting of one-letter substrings. Set and table elements are generated in an undefined order.

If x is a messaging connection to a POP server, !x produces complete messages as strings. Other

types of files, including network connections, produce elements consisting of text lines.

/ x null test

\ x nonnull test

The null and nonnull tests succeed and produce their operand if it satisfies the test.

- number negate

+ number numeric identity

Negation reverses the sign of its operand. Numeric identity does not change its operand’s value

other than to convert to a required numeric type.

= string tab/match

The tab/match operator is equivalent to calling tab(match(s)) on its operand.

* x : integer size

The size operator returns the number of elements in string, cset or structure x.

. x : x dereference

The dereference operator returns the value x.

? x : any random element

13

The random operator produces a random element from x. If x is a string, ?x produces a random

one-letter substring. The result is a variable that may be assigned. If x is a positive integer, ?x
produces a random integer between 1 and x. ?0 returns a real in the range from 0.0-1.0.

| x : x* repeated alternation

The repeated alternation operator generates results from evaluating its operand over and over

again in an infinite loop.

˜ cset cset complement

The complement operator returns a cset consisting of all characters not in its operand.

ˆ co-expression refresh co-expression

The refresh operator restarts a co-expression so the next time it is activated it will begin with its

first result.

7.3 Binary operators

Most binary operators may be augmented with an assignment. If such an operator is followed by

a := the left operand must be a variable, and the expression x op:= y is equivalent to x := x op y.

For example, x +:= 5 is equivalent but faster than the expression x := x+5.

number1 ˆ number2 power

number1 * number2 multiply

number1 / number2 divide

number1 % number2 modulo

number1 + number2 add

number1 - number2 subtract

The arithmetic operators may be augmented.

set1 ** set2 intersection

set1 ++ set2 union

set1 -- set2 difference

The set operators work on sets or csets. They may be augmented.

x . name field

object . name (params) method invocation

object $ superclass .name (params) superclass method invocation

The field operator selects field name out of a record, object, or package. For objects, name may be

a method, in which case the field operator is being used as part of a method invocation. Superclass

method invocation consists of a dollar sign and superclass name prior to the field operator.

number1 = number2 equal

number1 ˜= number2 not equal

number1 < number2 less than

number1 <= number2 less or equal

number1 > number2 greater than

14

number1 >= number2 greater or equal

string1 == string2 string equal

string1 ˜== string2 string not equal

string1 << string2 string less than

string1 <<= string2 string less or equal

string1 >> string2 string greater than

string1 >>= string2 string greater or equal

x1 === x2 equivalence

x1 ˜=== x2 non equivalence

Relational operators produce their right operand if they succeed. They may be augmented.

var := expr assign

var1 :=: var2 swap

var <- expr reversible assignment

var1 <-> var2 reversible swap

The several assignment operators all require variables for their left operands, and swap operators

also require variables for their right operands.

string ? expr scan string

String scanning evaluates expr with &subject equal to string and &pos starting at 1. It may be

augmented.

x ! y apply

The binary bang (exclamation) operator calls x, using y as its parameters. x may be a procedure,

or the string name of a procedure. y is a list or record.

[x] @ co-expression activate co-expression

The activate operator transfers execution control from the current co-expression to its right

operand co-expression. The transmitted value is x, or &null if no left operand is supplied. Acti-

vation may be augmented.

[x] @> [y] send message

[x] @>> [y] blocking send message

The send operator places a message in another thread’s public inbox, or in the current thread’s

public outbox. The normal version fails if the box is full; the blocking version waits for space to

become available.

[x] <@ [y] receive message

[x] <<@ [y] blocking receive message

The receive operator obtains a message from another thread’s public outbox, or the current

thread’s public inbox. The normal version fails if the box is empty; the blocking version waits for

a message to become available.

string1 || string2 concatenation

list1 ||| list2 list concatenation

15

The concatenation operators produce new values containing a copy of the left operand followed

by a copy of the right operand. They may be augmented.

x1 & x2 conjunction

expr1 | expr2 alternation

The conjunction operator produces x2 if x1 succeeds. The alternation operator produces the

results of expr1 followed by the results of expr2; it is a generator. These operators may be

augmented.

x1 \ integer limitation

The limitation operator fails if it is resumed after its left operand has produced a number of

results equal to its right operand.

(expr [, expr]*) mutual evaluation

p (expr [, expr]*) invocation

By themselves, parentheses are used to override operator precedence in surrounding expressions.

A comma-separated list of expressions is evaluated left to right, and fails if any operand fails. Its

value is the right of the rightmost operand.

When preceded by an operand, parentheses form an invocation. The operand may be a

procedure, a method, a string that is converted to a procedure name, or an integer that selects

the parameter to use as the result of the entire expression.

[] empty list creation

[expr [, expr]*] list creation

[: expr :] list comprehension

expr1 [expr2 [, expr]*] subscript

expr1 [expr2 : expr3] subsection

expr1 [expr2 +: expr3] forward relative subsection

expr1 [expr2 -: expr3] backward relative subsection

With no preceding operand, square brackets create and initialize lists. Initializer values are

comma-separated, except in list comprehension where the expression’s values (obtained as if by

every) are used to provide the initial list elements. When preceded by an operand, square brackets

form a subscript or subsection. Multiple comma-separated subscript operands are equivalent to

separate subscript operations with repeating square brackets, so x[y,z] is equivalent to x[y][z].
Subscripting selects an element from a structure and allows that element to be assigned or for

its value to be used. Lists and strings are subscripted using 1-based integer indices, tables are

subscripted using arbitrary keys, and records may be subscripted by either string fieldname or

1-based integer index. Message connections may be subscripted by string header to obtain server

responses; POP connections may also be subscripted by 1-based integer message numbers.

Subsectioning works on strings and lists. For strings, the subsection is a variable if the string

was a variable, and assignment to the subsection makes the variable hold the new, modified string

constructed by replacing the subsection. For lists, a subsection is a new list that contains a copy

of the elements from the original list.

expr1 ; expr2 bound expression

16

A semicolon bounds expr1. Once expr2 is entered, expr1 cannot be resumed for more results.

The result of expr2 is the result of the entire expression. Semicolons are automatically inserted

at ends of lines wherever it is syntactically allowable to do so. This results in many implicitly

bounded expressions.

{ expr [; expr]* } compound expression

p { expr [; expr]* } programmer defined control structure

Curly brackets typically cause a sequence of bounded expressions to be treated as a single ex-

pression. Preceded by a procedure value, curly brackets introduce a programmer defined control

structure in which a co-expression is created for each argument; the procedure is called with these

co-expressions as its parameters, and can determine for itself whether, and in what order, to

activate its parameters to obtain values.

7.4 Built-in functions

Unicon’s built-in functions are a key element of its ease of learning and use. They provide

substantial functionality in a consistent and easily memorized manner.

In addition to automatic type conversion, built-in functions make extensive use of optional

parameters with default values. Default values are indicated in the function descriptions, with

the exception of string scanning functions. String scanning functions end with three parameters

that default to the string &subject, the integer &pos, and the end of string (0) respectively. The

position argument defaults to 1 when the string argument is supplied rather than defaulted.

abs(N) : number absolute value

abs(N) produces the maximum of N or -N.

acos(r) : real arc cosine

acos(r) produces the arc cosine of r. The argument is given in radians.

any(c, s, i, i) : integer? cset membership

String scanning function any(c,s,i1,i2) produces i1+1 if s[i1:i2][1] is in cset c, but fails otherwise.

args(x,i) : any number of arguments

args(p) produces the number of arguments expected by procedure p. If p takes a variable number

of arguments, args(p) returns a negative number to indicate that the final argument is a list

conversion of an arbitrary number of arguments. For example, args(p) for a procedure p with

formal parameters (x, y, z[]) returns a -3. args(C) produces the number of arguments in the current

operation in co-expression C, and args(C,i) produces argument number i within co-expression C.

asin(real) : real arc sine

asin(r1) produces the arc sine of r1. The argument is given in radians.

atan(r, r:1.0) : real arc tangent

atan(r1) produces the arc tangent of r1. atan(r1,r2) produces the arc tangent of r1 and r2.

Arguments are given in radians.

17

atanh(r) : real inverse hyperbolic tangent

atanh(r) produces the inverse hyperbolic tangent of r. Arguments are given in radians.

bal(cs:&cset, cs:’(’, cs:’)’, s, i, i) : integer* balance string

String scanning function bal(c1,c2,c3,s,i1,i2) generates the integer positions in s at which a mem-

ber of c1 in s[i1:i2] is balanced with respect to characters in c2 and c3.

center(s, i:1, s:” ”) : string center string

center(s1,i,s2) produces a string of i characters. If i > *s1 then s1 is padded equally on the left

and right with s2 to length i. If i < *s1 then the center i characters of s1 are produced.

channel(TH) : list communicationsl channel

channel(TH) creates a communications channel between the current thread and thread TH.

char(i) : string encode character

char(i) produces a string consisting of the character encoded by integer i.

chdir(s) : string change directory

chdir(s) changes the current working directory to s. chdir() returns the current working directory.

chmod(f, m) : ? file permissions

chmod(f, m) sets the access permissions (”mode”) of a string filename (or on UNIX systems, an

open file) f to a string or integer mode m. The mode indicates the change to be performed. The

string is of the form

[ugoa]*[+-=][rwxRWXstugo]*

The first group describes the set of mode bits to be changed: u is the owner set, g is the

group and o is the set of all others. The character a designates all the fields. The operator (+-=)

describes the operation to be performed: + adds a permission, - removes a permission, and = sets

a permission. The permissions themselves are:

r read

w write

x execute

R read if any other set already has r

W write if any other set already has w

X execute if any other set already has x

s setuid (if the first part contains u and/or setgid if the first part contains g

t sticky if the first part has o

u the u bits on the same file

g the g bits on the same file

o the o bits on the same file

If the first group is missing, then it is treated as ”all” except that any bits in the user’s umask

will not be modified in the mode. Not all platforms make use of all mode bits described here; the

mode bits that are used is a property of the filesystem on which the file resides.

18

classname(r) : string class name

classname(r) produces the name of r’s class.

close(f) : file | integer close file

close(f) closes file, pipe, window, network or message connection, or database f and returns any

resources associated with it to the operating system. If f was a window, close(f) causes it to

disappear, but the window can still be written to and copied from until all open bindings are

closed. If f was a pipe or network connection, close() returns the integer exit status of the

connection, otherwise it returns the closed file.

cofail(CE) : any transmit co-expression failure

cofail(ce) activates co-expression ce, transmitting failure instead of a result.

collect(i:0, i:0) : null collect garbage

collect(i1,i2) calls the garbage collector to ensure that i2 bytes are free in region i1. i1 can be 0

(no region in particular) 1 (static region) 2 (string region) or 3 (block region).

condvar() : condition variable create condition variable

condvar() creates a new condition variable.

constructor(s, ...) : procedure record constructor

constructor(label, field, field, ...) creates a new record type named label with fields named by its

subsequent arguments, and returns a constructor procedure for this record type.

copy(any) : any copy value

copy(x) produces a copy of x. For immutable types (numbers, strings, csets, procedures) this is a

no-op. For mutable types (lists, tables, sets, records, objects) a one-level deep copy of the object

is made.

cos(r) : real cosine

cos(r) produces the cosine of r. The argument is given in radians.

cset(any) : cset? convert to cset

cset(x) converts x to a cset, or fails if the conversion cannot be performed.

ctime(i) : string format a time value into local time

ctime(i) converts an integer time given in seconds since the epoch, Jan 1, 1970 00:00:00 into a

string in the local timezone. See also keywords &clock and &dateline.

dbcolumns(D,s) : list ODBC column information

dbcolumns(db, tablename) produces a list of record (catalog, schema, tablename, colname,

datatype, typename, colsize, buflen, decdigits, numprecradix, nullable, remarks) entries. Fields

datatype and typename are SQL-dependent and data source dependent, respectively. Field col-
size gives the maximum length in characters for SQL CHAR or SQL VARCHAR columns.. Field

decdigits gives the number of significant digits right of the decimal. Field numprecradix specifies

19

whether colsize and decdigits are specified in bits or decimal digits. Field nullable is 0 if the

column does not accept null values, 1 if it does accept null values, and 2 if it is not known whether

the column accepts null values.

dbdriver(D) : record ODBC driver information

dbdriver(db) produces a record driver(name, ver, odbcver, connections, statements, dsn) that

describes the details of the ODBC driver used to connect to database db. Connections and

statements are the maximums the driver can support. Fields ver and odbcver are the driver and

ODBC version numbers. Fields name and dsn are the driver filename and Windows Data Source

Name associated with the connection.

dbkeys(D,string) : list ODBC key information

dbkeys(db,tablename) produces a list of record (columnname, sequencenumber) pairs containing

information about the primary keys in tablename.

dblimits(D) : record ODBC operation limits

dblimits(db) produces a record with fields maxbinlitlen, maxcharlitlen, maxcolnamelen, max-
groupbycols, maxorderbycols, maxindexcols, maxselectcols, maxtblcols, maxcursnamelen,
maxindexsize, maxrownamelen, maxprocnamelen, maxqualnamelen, maxrowsize, maxrowsize-
long, maxstmtlen, maxtblnamelen, maxselecttbls, and maxusernamelen that contains the upper

bounds of the database for many parameters.

dbproduct(D) : record database name

dbproduct(db) produces a record (name, ver) that gives the name and the version of the DBMS

product containing db.

dbtables(D) : list ODBC table information

dbtables(db) returns a list of record (qualifier, owner, name, type, remarks) entries that describe

all of the tables in the database associated with db.

delay(i) : null delay for i milliseconds

delay(i) pauses the program for at least i milliseconds.

delete(x1, x2, ...) : x1 delete element

delete(x1, x2) deletes elements denoted by the 2nd and following parameters from set, table, list,

DBM database, or POP connection x1 if it is there. In any case, it returns x1. If x1 is a table or

set, elements xi denote keys of arbitrary type. If x1 is a DBM database, indices must be strings.

If x1 is a list or a POP messaging connection, elements xi are integer indices of the element to be

deleted. POP messages are actually deleted when the close() operation closes that connection.

detab(string, integer:9,...) : string replace tabs

detab(s,i,...) replaces tabs with spaces, with stops at columns indicated by the second and follow-

ing parameters, which must all be integers. Tab stops are extended infinitely using the interval

between the last two specified tab stops.

display(i:&level, f:&errout, CE:¤t) : null write variables

20

display(i,f) writes the local variables of i most recent procedure activations, plus global variables,

to file f.

dtor(r) : real convert degrees to radians

dtor(r) produces the equivalent of r degrees, expressed in radians.

entab(s, i:9,...) : string replace spaces

entab(s,i,...) replaces spaces with tabs, with stops at columns indicated. Tab stops are extended

infinitely using the interval between the last two specified tab stops.

errorclear() : null clear error condition

errorclear() resets keywords &errornumber, &errortext, and &errorvalue to indicate that no error

is present.

eventmask(CE, cset) : cset | null get/set event mask

eventmask(ce) returns the event mask associated with the program that created ce, or &null if

there is no event mask. eventmask(ce,cs) sets that program’s event mask to cs.

EvGet(c, flag) : string get event from monitored program

EvGet(c,flag) activates a program being monitored until an event in cset mask c occurs. Under

normal circumstances this is a one-character string event code.

EvSend(i, x, CE) : any transmit event

EvSend(x, y, C) transmits an event with event code x and event value y to a monitoring co-

expression C.

exit(i:normalexit) exit process

exit(i) terminates the current program execution, returning status code i. The default is the

platform-dependent exit code that indicates normal termination (0 on most systems).

exp(r) : real exponential

exp(r) produces the result of &e ˆ r.

fetch(D, s?) : string | row? fetch database value

fetch(d, k) fetches the value corresponding to key k from a DBM or SQL database d. The result is

a string (for DBM databases) or a row (for SQL databases). For SQL databases, when the string

k is omitted, fetch(d) produces the next row in the current selection, and advances the cursor

to the next row. A row is a record whose field names and types are determined by the columns

specified in the current query. fetch(d) fails if there are no more rows to return from the current

query. Typically a call to dbselect() will be followed by a while-loop that calls fetch() repeatedly

until it fails.

fieldnames(R) : string* get field names

fieldnames(r) produces the names of the fields in record r.

find(s, s, i, i) : integer* find string

21

String scanning function find(s1,s2,i1,i2) generates the positions in s2 at which s1 occurs as a

substring in s2[i1:i2].

flock(f, s) : ? apply or remove file lock

flock(f,s) applies an advisory lock to the file. Advisory locks enable processes to cooperate when

accessing a shared file, but do not enforce exclusive access. The following characters can be used

to make up the operation string:

s shared lock

x exclusive lock

b don’t block when locking

u unlock

Locks cannot be applied to windows, directories or database files. A file may not simultane-

ously have shared and exclusive locks.

flush(f) : file flush file

flush(f) flushes all pending or buffered output to file f.

function() : string* name the functions

function() generates the names of the built-in functions.

get(L,i:1) : any? get element from queue

get(L) returns an element which is removed from the head of the queue L. get(L, i) removes i
elements, returning the last one removed.

getch() : string? get character from console

getch() waits for (if necessary) and returns a character typed at the keyboard, even if standard

input was redirected. The character is not displayed.

getche() : string? get and echo character from console

getche() waits for (if necessary) and returns a character typed at the console keyboard, even if

standard input was redirected. The character is echoed to the screen.

getenv(s) : string? get environment variable

getenv(s) returns the value of environment variable s from the operating system.

gettimeofday() : record time of day

Returns the current time in seconds and microseconds since the epoch, Jan 1, 1970 00:00:00. The

sec value may be converted to a date string with ctime or gtime. See also keywords &now, &clock,

and &dateline. Return value: record posix_timeval(sec, usec)

globalnames(CE) : string* name the global variables

globalnames(ce) generates the names of the global variables in the program that created co-

expression ce.

gtime(i) : string format a time value into UTC

22

Converts an integer time in seconds since the epoch, Jan 1, 1970 00:00:00 into a string in Coor-

dinated Universal Time (UTC).

iand(i, i) : integer bitwise and

iand(i1, i2) produces the bitwise AND of i1 and i2.

icom(i) : integer bitwise complement

icom(i) produces the bitwise complement (one’s complement) of i.

image(any) : string string image

image(x) returns the string image of the value x.

insert(x1, x2, x3:&null) : x1 insert element

insert(x1, x2, x3) inserts element x2 into set, table, or list or DBM database x1 if not already

there. Unless x1 is a set, the assigned value for element x2 is x3. For lists, x2 is an integer index;

for other types, it is a key. insert() always succeeds and returns x1.

integer(any) : integer? convert to integer

integer(x) converts value x to an integer, or fails if the conversion cannot be performed.

ior(i, i) : integer bitwise or

ior(i1, i2) produces the bitwise OR of i1 and i2.

ishift(i, i) : integer bitwise shift

ishift(i, j) produces the value obtained by shifting i by j bit positions. Shifting is to the left if j>0,

or to the right if j<0. j zero bits are introduced at the end opposite the shift direction.

istate(CE, s) : integer interpreter state

istate(ce, attrib) reports selected virtual machine interpreter state information. attrib must be one

of: “count”, “ilevel”, “ipc”, “ipc_offset”, “sp”, “efp”, “gfp”. Used by monitors.

ixor(i, i) : integer bitwise xor

ixor(i1, i2) produces the bitwise exclusive or of i1 and i2.

kbhit() : ? check for console input

kbhit() checks to see if there is a keyboard character waiting to be read.

key(x) : any* table keys

key(T) generates the key (entry) values from table T. key(L) generates the indices from 1 to *L in

list L. key(R) generates the string field names of record R.

keyword(s,CE:¤t,i:0) : any* produce keyword value

keyword(s,ce,i) produces the value of keyword s in the context of ce’s execution, i levels up in

the stack from the current point of execution. Used in execution monitors.

left(s, i:1, s:” ”) : string left format string

23

left(s1,i,s2) formats s1 to be a string of length i. If s1 is more than i characters, it is truncated.

If s1 is fewer than i characters it is padded on the right with as many copies of s2 as needed to

increase it to length i.

list(integer:0, any:&null) : list create list

list(i, x) creates a list of size i, in which all elements have the initial value x. If x is a mutable

value such as a list, all elements refer to the same value, not a separate copy of the value for each

element.

load(s,L,f:&input,f:&output,f:&errout,i,i,i) : co-expression load Unicon program

load(s,arglist,input,output,error,blocksize,stringsize,stacksize) loads the icode file named s and

returns that program’s execution as a co-expression ready to start its main() procedure with

parameter arglist as its command line arguments. The three file parameters are used as that

program’s &input, &output, and &errout. The three integers are used as its initial memory region

sizes.

loadfunc(s, s) : procedure load C function

loadfunc(filename,funcname) dynamically loads a compiled C function from the object library

file given by filename. funcname must be a specially written interface function that handles Icon

data representations and calling conventions.

localnames(CE, i:0) : string* local variable names

localnames(ce,i) generates the names of local variables in co-expression ce, i levels up from the

current procedure invocation. The default i of 0 generates names in the currently active procedure

in ce.

lock(x) : x lock mutex

lock(x) locks the mutex x or the mutex associated with thread-safe object x .

log(r, r:&e) : real logarithm

log(r1,r2) produces the logarithm of r1 to base r2.

many(c, s, i, i) : integer? many characters

String scanning function many(c,s,i1,i2) produces the position in s after the longest initial se-

quence of members of c within s[i1:i2].

map(s, s:&ucase, s:&lcase) : string map string

map(s1,s2,s3) maps s1, using s2 and s3. The resulting string will be a copy of s1, with the

exception that any of s1’s characters that appear in s2 are replaced by characters at the same

position in s3.

match(s, s:&subject, i:&pos, i:0) : integer match string

String scanning function match(s1,s2,i1,i2) produces i1+*s1 if s1==s2[i1+:*s1], but fails other-

wise.

max(n, ...) : number largest value

max(x, ...) returns the largest value among its arguments, which must be numeric.

24

member(x, ...) : x? test membership

member(x, ...) returns x if its second and subsequent arguments are all members of set, cset, list

or table x but fails otherwise. If x is a cset, all of the characters in subsequent string arguments

must be present in x in order to succeed.

membernames(x) : list class member names

membernames(x) produces a list containing the string names of the fields of x, where x is either

an object or a string name of a class.

methodnames(x) : list class method names

methodnames(x) produces a list containing the string names of the methods defined in class x,

where x is either an object or a string name of a class.

methods(x) : list class method list

methods(x) produces a list containing the procedure values of the methods of x, where x is either

an object or a string name of a class.

min(n, ...) : number smallest value

min(x, ...) returns the smallest value among its arguments, which must be numeric.

mkdir(s, s?) : ? create directory

mkdir(path, mode) creates a new directory named path with mode mode. The optional mode
parameter can be numeric or a string of the form accepted by chmod(). The function succeeds if

a new directory is created.

move(i:1) : string move scanning position

move(i) moves &pos i characters from the current position and returns the substring of &subject
between the old and new positions. This function reverses its effects by resetting the position to

its old value if it is resumed.

mutex(x,y) : x create a mutex

mutex() creates a new mutex. For mutex(x) associates the new mutex with structure x . The call

mutex(x,y) associates an existing mutex y (or mutex associated with protected object y) with

structure x .

name(v, CE:¤t) : string variable name

name(v) returns the name of variable v within the program that created co-expression c. Keyword

variables are recognized and named correctly. name() returns the base type and subscript or field

information for variables that are elements within other values, but does not produce the source

code variable name for such variables.

numeric(any) : number convert to number

numeric(x) produces an integer or real number resulting from the type conversion of x, but fails

if the conversion is not possible.

open(s, s:”rt”, ...) : file? open file

25

open(s1, s2, ...) opens a file named s1 with mode s2 and attributes given in trailing arguments.

The modes recognized by open() are:

"a" append; write after current contents

"b" open for both reading and writing (b does not mean binary mode!)

"c" create a new file and open it

"d" open a [NG]DBM database

"g" create a 2D graphics window

"gl" create a 3D graphics window

"n" connect to a remote TCP network socket

"na" accept a connection from a TCP network socket

"nau" accept a connection from a UDP network socket

"nl" listen on a TCP network socket

"nu" connect to a UDP network socket

"m" connect to a messaging server (HTTP, SMTP, POP, ...)

"o" open an ODBC connection to a (typically SQL) database

"p" execute a program given by command line s1 and open a pipe to it

"r" read

"t" use text mode, with newlines translated

"u" use a binary untranslated mode

"w" write

Directories may only be opened for reading, and produce the names of all files, one per line.

Pipes may be opened for reading or writing, but not both.

When opening a network socket: the first argument s1 is the name of the socket to connect.

If s1 is of the form ”s:i”, it is an Internet domain socket on host s and port i; otherwise, it is the

name of a Unix domain socket. If the host name is null, it represents the current host. Mode ”n”

allows an optional third parameter, an integer timeout (in milliseconds) after which open() fails

if no connection has been established by that time.

For a UDP socket, there is not really a connection, but any writes to that file will send a

datagram to that address, so that the address doesn’t have to be specified each time. Also, read()
or reads() cannot be performed on a UDP socket; use receive. UDP sockets must be in the INET

domain; the address must have a colon.

For a DBM database, only one modifier character may be used: if s1 is "dr" it indicates that

the database should be opened in read-only mode.

The filename argument is a Uniform Resource Indicator (URI) when opening a messaging

connection. Arguments after the mode ”m” are sent as headers. The HTTP User-Agent header

defaults to ”Unicon Messaging/10.0” and Host defaults to the host and port indicated in the URI.

The SMTP From: header obtains its default from a UNICON USERADDRESS environment

variable if it is present.

For 2D and 3D windows, attribute values may be specified in the following arguments to

open(). open() fails if a window cannot be opened or an attribute cannot be set to a requested

value.

opmask(CE, c) : cset opcode mask

26

opmask(ce) gets ce’s program’s opcode mask. The function returns &null if there is no opcode

mask. opmask(ce,cs) sets ce’s program’s opcode mask to cs. This function is part of the

execution monitoring facilities.

oprec(x) : record get methods vector

oprec(r) produces a variable reference for r’s class’ methods vector.

ord(s) : integer ordinal value

ord(s) produces the integer ordinal (value) of s, which must be of size 1.

paramnames(CE, i:0) : string* parameter names

paramnames(ce,i) produces the names of the parameters in the procedure activation i levels above

the current activation in ce.

parent(CE) : co-expression parent program

parent(ce) returns &main for ce’s parent program. This is interesting only when programs are

dynamically loaded using the load() function.

pipe() : list create pipe

pipe() creates a pipe and returns a list of two file objects. The first is for reading, the second is

for writing. See also function filepair().

pop(L | Message) : any? pop from stack

pop(L) removes an element from the top of the stack (L[1]) and returns it. pop(M) removes and

returns the first message in POP mailbox connection M; the actual deletion occurs when the

messaging connection is closed.

pos(i) : integer? test scanning position

pos(i) tests whether &pos is at position i in &subject.

proc(any, i:1, C) : procedure? convert to procedure

proc(s,i) converts s to a procedure if that is possible. Parameter i is used to resolve ambiguous

string names; it must be either 0, 1, 2, or 3. If i is 0, a built-in function is returned if it is

available, even if the global identifier by that name has been assigned differently. If i is 1, 2,

or 3, the procedure for an operator with that number of operands is produced. For example,

proc("-",2) produces the procedure for subtraction, while proc("-") produces the procedure for

unary negation. proc(C,i) returns the procedure activated i levels up with C. proc(p, i, C) returns

procedure p if it belongs to the program which created co-expression C.

pull(L,i:1) : any? remove from list end

pull(L) removes and produces an element from the end of a nonempty list L. pull(L, i) removes i
elements, producing the last one removed.

push(L, any, ...) : list push on to stack

push(L, x1, ..., xN) pushes elements onto the beginning of list L. The order of the elements added

to the list is the reverse of the order they are supplied as parameters to the call to push(). push()
returns the list that is passed as its first parameter, with the new elements added.

27

put(L, x1, ..., xN) : list add to list end

put(L, x1, ..., xN) puts elements onto the end of list L.

read(f:&input) : string? read line

read(f) reads a line from file f. The end of line marker is discarded.

reads(f:&input, i:1) : string? read characters

reads(f,i) reads up to i characters from file f. It fails on end of file. If f is a network connection,

reads() returns as soon as it has input available, even if fewer than i characters were delivered. If

i is -1, reads() reads and produces the entire file as a string. Care should be exercised when using

this feature to read very large files.

ready(f:&input, i:0) : string? non-blocking read

ready(f,i) reads up to i characters from file f. It returns immediately with available data and fails

if no data is available. If i is 0, ready() returns all available input. It is not currently implemented

for window values.

real(any) : real? convert to real

real(x) converts x to a real, or fails if the conversion cannot be performed.

receive(f) : record receive datagram

receive(f) reads a datagram addressed to the port associated with f, waiting if necessary. The

returned value is a record of type posix_message(addr, msg), containing the address of the sender

and the contents of the message respectively.

remove(s) : ? remove file

remove(s) removes the file named s.

rename(s, s) : ? rename file

rename(s1,s2) renames the file named s1 to have the name s2.

repl(x, i) : x replicate

repl(x, i) concatenates and returns i copies of string or list x.

reverse(x) : x reverse sequence

reverse(x) returns a value that is the reverse of string or list x.

right(s, i:1, s:” ”) : string right format string

right(s1,i,s2) produces a string of length i. If i<*s1, s1 is truncated. Otherwise, the function pads

s1 on left with s2 to length i.

rmdir(s) : ? remove directory

rmdir(d) removes the directory named d. rmdir() fails if d is not empty or does not exist.

rtod(r) : real convert radians to degrees

rtod(r) produces the equivalent of r radians, expressed in degrees.

28

runerr(i, any) runtime error

runerr(i,x) produces runtime error i with value x. Program execution is terminated.

seek(f, any) : file? seek to file offset

seek(f,i) seeks to offset i in file f, if it is possible. If f is a regular file, i must be an integer. If f
is a database, i seeks a position within the current set of selected rows. The position is selected

numerically if i is convertible to an integer; otherwise i must be convertible to a string and the

position is selected associatively by the primary key.

select(x1, x2, ?) : list files with available input

select(files?, timeout) waits for a input to become available on any of several files, typically

network connections or windows. Its arguments may be files or lists of files, ending with an

optional integer timeout value in milliseconds. It returns a list of those files among its arguments

that have input waiting.

If the final argument to select() is an integer, it is an upper bound on the time elapsed before

select returns. A timeout of 0 causes select() to return immediately with a list of files on which

input is currently pending. If no files are given, select() waits for its timeout to expire. If no

timeout is given, select() waits forever for available input on one of its file arguments. Directories

and databases cannot be arguments to select().

send(s, s) : ? send datagram

send(s1, s2) sends a UDP datagram to the address s1 (in host:port format) with the contents

s2.

seq(i:1, i:1) : integer* generate sequence

seq(i, j) generates the infinite sequence i, i+j, i+2*j, j may not be 0.

serial(x) : integer? structure serial number

serial(x) returns the serial number for structure x, if it has one. Serial numbers uniquely identify

structure values.

set(x, ...) : set create set

set() creates a set. Arguments are inserted into the new set, with the exception of lists. set(L)
creates a set whose members are the elements of list L.

setenv(s) : ? set environment variable

setenv() sets an environment variable s in the operating system.

signal(cv, i:1) : ?? signal a conditional variable

signal(x, y) signals the condition variable x . If y is supplied, the condition variable is signaled y

times. If y is 0, a “broadcast” signal is sent waking up all threads waiting on x .

sin(r) : real sine

sin(r) produces the sine of r. The argument is given in radians.

sort(x, i:1) : list sort structure

29

sort(x, i) sorts structure x. If x is a table, parameter i is the sort method. If i is 1 or 2, the table

is sorted into a list of lists of the form [key, value]. If i is 3 or 4, the table is sorted into a list of

alternating keys and values. Sorting is by keys for odd-values of i, and by table element values

for even-values of i.

sortf(x, i:1) : list sort by field

sortf(x,i) sorts a list, record, or set x using field i of each element that has one. Elements that

don’t have an i’th field are sorted in standard order and come before those that do have an i’th
field.

spawn(CE, i, i) : thread launch asynchronous thread

spawn(ce) launches co-expression ce as an asynchronous thread that will execute concurrently

with the current co-expression. The two optional integers specify the memory in bytes allocated

for the thread’s block and string regions. The defaults are 10% of the main thread heap size.

sql(D, s) : integer execute SQL statement

sql(db, query) executes arbitrary SQL code on db. This function allows the program to do

vendor-specific SQL and many SQL statements that cannot be expressed otherwise using the

Unicon database facilities. sql() can leave the database in an arbitrary state and should be used

with care.

sqrt(r) : real square root

sqrt(r) produces the square root of r.

stat(f) : record? get file information

stat(f) returns a record with information about the file f which may be a path or a file object.

The return value is of type: record posix_stat(dev, ino, mode, nlink, uid, gid, rdev, size, atime,
mtime, ctime, blksize, blocks, symlink). Many of these fields are POSIX specific, but a number

are supported across platforms, such as the file size in bytes (the size field), access permissions

(the mode field), and the last modified time (the mtime field).

The atime, mtime, and ctime fields are integers that may be formatted with the ctime() and

mtime() functions. The mode is a string similar to the long listing option of the UNIX ls(1)
command. For example, "-rwxrwsr-x" represents a plain file with a mode of 2775 (octal). stat(f)
fails if filename or path f does not exist.

staticnames(CE:¤t, i:0) : string* static variable names

staticnames(ce,i) generates the names of static variables in the procedure i levels above the current

activation in ce.

stop(s|f, ...) : stop execution

stop(args) halts execution after writing out its string arguments, followed by a newline, to &errout.
If any argument is a file, subsequent string arguments are written to that file instead of &errout.
The program exit status indicates that an error has occurred.

string(x) : string? convert to string

string(x) converts x to a string and returns the result, or fails if the value cannot be converted.

30

system(x, f:&input, f:&output, f:&errout, s) : integer execute system command

system(x, f1, f2, f3, waitflag) launches execution of a program in a separate process. x can

be either a string or a list of strings. In the former case, whitespace is used to separate the

arguments and the command is processed by the platform’s command interpreter. In the second

case, each member of the list is an argument and the second and subsequent list elements are

passed unmodified to the program named in the first element of the list.

The three file arguments are files that will be used for the new process’ standard input,

standard output and standard error. The return value is the exit status from the process. If the

waitflag argument is "nowait", system() returns immediately after spasyswning the new process,

and the return value is then the process id of the new process.

sys errstr(i) : string? system error string

sys_errstr(i) produces the error string corresponding to i, a value obtained from &errno.

tab(i:0) : string? set scanning position

tab(i) sets &pos to i and returns the substring of &subject spanned by the former and new

positions. tab(0) moves the position to the end of the string. This function reverses its effects by

resetting the position to its old value if it is resumed.

table(k,v, ..., x) : table create table

table(x) creates a table with default value x. If x is a mutable value such as a list, all references

to the default value refer to the same value, not a separate copy for each key. Given more than

one argument, table(k,v,...x) takes alternating keys and values and populates the table with these

initial contents.

tan(r) : real tangent

tan(r) produces the tangent of r in radians.

trap(s, p) : procedure trap or untrap signal

trap(s, proc) sets up a signal handler for the signal s (the name of the signal). The old handler

(if any) is returned. If proc is null, the signal is reset to its default value.

Caveat: This is not supported by the optimizing compiler, iconc!

trim(s, c:’ ’, i:-1) : string trim string

trim(s,c,i) removes characters in c from s at the back (i=-1, the default), at the front (i=1), or at

both ends (i=0).

truncate(f, i) : ? truncate file

truncate(f, len) changes the file f (which may be a string filename, or an open file) to be no longer

than length len. truncate() does not work on windows, network connections, pipes, or databases.

trylock(x) : x? try locking mutex

trylock(x) locks the mutex x or the mutex associated with thread-safe object x , if it is not locked.

type(x) : string type of value

31

type(x) returns a string that indicates the type of x.

unlock(x) : x unlock mutex

unlock(x) unlocks the mutex x or the mutex associated with thread-safe object x .

upto(c, s, i, i) : integer* find characters in set

String scanning function upto(c,s,i1,i2) generates the sequence of integer positions in s up to a

character in c in s[i2:i2], but fails if there is no such position.

utime(s, i, i) : null file access/modification times

utime(f, atime, mtime) sets the access time for a file named f to atime and the modification time

to mtime. The ctime is set to the current time. The effects of this function are platform specific.

Some file systems support only a subset of these times.

variable(s, CE:¤t, i:0) : any? get variable

variable(s, c, i) finds the variable with name s and returns a variable descriptor that refers to its

value. The name s is searched for within co-expression c, starting with local variables i levels

above the current procedure frame, and then among the global variables in the program that

created c.

wait(x) : ? wait for thread or condition variable

wait(x) waits for x . If x is a thread, wait() waits for it to finish. If x is is a condition variable

wait() waits until that variable is signaled by another thread.

where(f) : integer? file position

where(f) returns the current offset position in file f. It fails on windows and networks. The

beginning of the file is offset 1.

write(s|f, ...) : string|file write text line

write(args) outputs strings, followed by a newline, to a file or files. Strings are written in order to

their nearest preceding file, defaulting to &output. A newline is output to the preceding file after

the last argument, as well as whenever a non-initial file argument directs output to a different

file. write() returns its last argument.

writes(s|f, ...) : string|file write strings

writes(args) outputs strings to one or more files. Each string argument is written to the nearest

preceding file argument, defaulting to &output. writes() returns its last argument.

7.5 Graphics functions

The names of built-in graphics functions begin with upper case. The built-in graphics functions are

listed here. These functions are more thoroughly described in [Griswold98]. Extensive procedure

and class libraries for graphics are described in [Griswold98] and in Appendix B. In 2D, arguments

named x and y are pixel locations in zero-based integer coordinates. In 3D windows coordinates

are given using real numbers, and functions by default take three coordinates (x,y,z) per vertex.

Attribute dim can be set to 2 or 4, changing most 3D functions to take vertices in a (x,y) or

32

(x,y,z,w) format. Arguments named row and col are cursor locations in one-based integer text

coordinates. Most functions’ first parameter named w defaults to &window and the window

argument can be omitted in the default case.

Active() : window produce active window

Active() returns a window that has one or more events pending. If no window has an event

pending, Active() blocks and waits for an event to occur. Active() starts with a different window

on each call in order to avoid window ”starvation”. Active() fails if no windows are open.

Alert() : window alert the user

Alert() produces a visual flash or audible beep that signifies to the user the occurrence of some

notable event in the application.

Bg(w,s) : string background color

Bg(w) retrieves the background color. Bg(w,s) sets the background color by name, rgb, or mutable

color value. Bg() fails if the background cannot be set to the requested color.

Clip(w,x:0,y:0,width:0,height:0) : window clip to rectangle

Clip(w,x,y,width,height) clips output to a rectangular area within the window. If width is 0, the

clip region extends from x to the right side of the window. If height is 0, the clip region extends

from y to the bottom of the window.

Clone(w,s,...) : window clone context

Clone(w) produces a new window binding in which a new graphics context is copied from w and

bound to w’s canvas. Additional string arguments specify attributes of the new binding, as in

WAttrib(). If the first string argument is “g” or “gl”, Clone() binds the new context to a subwindow

with separate canvas and input queue inside of and relative to w. Clone() fails if an attribute

cannot be set to a requested value.

Color(w, i, s,...) : window set mutable color

Color(w,i) produces the current setting of mutable color i. Color(w,i,s,...) sets the color map

entries identified by i[j] to the corresponding colors s[j]. See [Griswold98].

ColorValue(w, s) : string convert color name to rgb

ColorValue(w,s) converts the string color s into a string with three comma-separated 16-bit integer

values denoting the color’s RGB components. ColorValue() fails if string s is not a valid name or

recognized decimal or hex encoding of a color.

CopyArea(w1, w2,x:0,y:0,width:0,height:0,x2:0,y2:0) : window copy area

CopyArea(w1,w2,x,y,width,height,x2,y2) copies a rectangular region within w1 defined by x,y,width,height
to window w2 at offset x2,y2. CopyArea() returns w1. &window is not a default for this function.

The default copies all of w1.

Couple(w1, w2) : window couple window to context

Couple(w1,w2) produces a new value that binds the window associated with w1 to the graphics

context associated with w2.

33

DrawArc(w, x, y, width, height:width, a1:0.0, a2:2*&pi, ...) : window draw arc

DrawArc(w,x,y,width,height,a1,a2,...) draws arcs or ellipses. Each is defined by six integer coor-

dinates. x, y, width and height define a bounding rectangle around the arc; the center of the arc is

the point (x+(width)/2,y+(height)/2). Angles are specified in radians. Angle a1 is the starting po-

sition of the arc, where 0.0 is the 3 o’clock position and the positive direction is counter-clockwise.

Angle a2 is not the end position, but rather specifies the direction and extent of the arc.

DrawCircle(w, x, y, radius, a1:0.0, a2:2*&pi, ...) : window draw circle

DrawCircle() draws a circle or arc, centered at (x,y) and otherwise similar to DrawArc() with

width=height.

DrawCube(w, x, y, z, len ...) : record draw cube

DrawCube(w, x, y, z, len. . .) draws a cube with sides of length len at the position (x, y, z) on the

3D window w. The display list element is returned. This procedure fails if the context attribute

dim is set to 2.

DrawCurve(w, x1, y1, ...) : window draw curve

DrawCurve(w,x1,y1,...,xn,yn) draws a smooth curve connecting each x,y pair in the argument list.

If the first and last point are the same, the curve is smooth and closed through that point.

DrawCylinder(w, x, y, z, h, r1, r2, ...) : record draw cylinder

DrawCylinder(w, x, y, z, h, r1, r2, . . .) draws a cylinder with a top of radius r1, a bottom with

radius r2, and a height h on 3D window w. The disk is centered at the point (x, y, z). The display

list element is returned. This procedure fails if the context attribute dim is set to 2.

DrawDisk(w, x, y, z, r1, r2, a1, a2, ...) : record draw disk

DrawDisk(W, x, y, z, r1, r2, a1, a2, . . .) draws a disk or partial disk centered at (x, y, z) on 3D

window w. The inner circle has radius r1 and the outer circle has radius r2. The parameters a1
and a2 are optional. If they are specified, a partial disk is drawn with a starting angle a1 and

sweeping angle a2. The display list element is returned.

DrawImage(w, x, y, s) : window draw bitmapped figure

DrawImage(w,x,y, s) draws an image specified in string s at location x,y.

DrawLine(w, x1, y1, z1 ...) : window [list] draw line

DrawLine(w,x1,y1,...,xn,yn) draws lines between each adjacent x,y pair of arguments. In 3D,

DrawLine() takes from 2-4 coordinates per vertex and returns the list that represents the lines on

the display list for refresh purposes.

DrawPoint(w, x1, y1, ...) : window [list] draw point

DrawPoint(w,x1,y1,...,xn,yn) draws points. In 3D, DrawPoint() takes from 2-4 coordinates per

vertex and returns the list that represents the points on the display list for refresh purposes.

DrawPolygon(w, x1, y1, [z1,] ...) : window [list] draw polygon

34

DrawPolygon(w,x1,y1,...,xn,yn) draws a polygon. In 3D, DrawPolygon() takes from 2-4 coordi-

nates per vertex and returns the list that represents the polygon on the display list for refresh

purposes.

DrawRectangle(w, x1, y1, width1, height1 ...) : window draw rectangle

DrawRectangle(w,x1,y1,width1,height1,...) draws rectangles. Arguments width and height define

the perceived size of the rectangle; the actual rectangle drawn is width+1 pixels wide and height+1
pixels high.

DrawSegment(w, x1, y1, [z1,] ...) : window [list] draw line segment

DrawSegment(w,x1,y1,...,xn,yn) draws lines between alternating x,y pairs in the argument list.

In 3D, DrawSegment() takes from 2-4 coordinates per vertex and returns the list that represents

the segments on the display list for refresh purposes.

DrawSphere(w, x, y, z, r, ...) : record draw sphere

DrawSphere(w, x, y, z, r,. . .) draws a sphere with radius r centered at (x, y, z) on 3D window w.

The display list element is returned. This procedure fails if the context attribute dim is set to 2.

DrawString(w, x1, y1, s1, ...) : window draw text

DrawString(w,x,y,s) draws text s at coordinates (x, y). This function does not draw any back-

ground; only the characters’ actual pixels are drawn. It is possible to use "drawop=reverse" with

this function to draw erasable text. DrawString() does not affect the text cursor position. New-

lines present in s cause subsequent characters to be drawn starting at (x, current_y + leading),

where x is the x supplied to the function, current_y is the y coordinate the newline would have

been drawn on, and leading is the current leading associated with the binding.

DrawTorus(w, x, y, z, r1, r2, ...) : record draw torus

DrawTorus(w, x, y, z, r1, r2,. . .) draws a torus with inner radius r1, outside radius r2, and centered

at (x,y,z) on 3D window w. The display list element is returned. This procedure fails if the context

attribute dim is set to 2.

EraseArea(w, x:0, y:0, width:0, height:0. ...) : window erase rectangular area

EraseArea(w,x,y,width,height,...) erases rectangular areas within the window to the background

color. If width is 0, the region cleared extends from x to the right side of the window. If height
is 0, the region erased extends from y to the bottom of the window. In 3D, EraseArea(W) clears

the contents of the entire window.

Event(w, i:infinity) : string|integer read event on window

Event(w, i) retrieves the next event available for window w. If no events are available, Event()
waits for i milliseconds. Keystrokes are encoded as strings, while mouse events are encoded as

integers. The retrieval of an event is accompanied by assignments to the keywords &x, &y, &row,

&col, &interval, &control, &shift, &meta, and if 3D attribute “pick=on”, &pick. Event() fails if the

timeout expires before an event occurs.

Fg(w, s) : string foreground color

35

Fg(w) retrieves the current foreground color. Fg(w,s) sets the foreground by name or value. Fg()
fails if the foreground cannot be set to the requested color. In 3D, Fg(w, s) changes the material

properties of subsequently drawn objects to the material properties specified by s. The string s
must be one or more semi-colon separated material properties. A material property is of the form

[diffuse | ambient | specular | emission] color name or “shininess n”, 0 <= n <= 128.

If string s is omitted, the current values of the material properties will be returned.

FillArc(w, x, y, width, height, a1, a2, ...) : window draw filled arc

FillArc(w,x,y,width,height,a1,a2,...) draws filled arcs, ellipses, and/or circles. Coordinates are as

in DrawArc().

FillCircle(w, x, y, radius, a1, a2, ...) : window draw filled circle

FillCircle(w,x,y, radius,a1,a2,...) draws filled circles. Coordinates are as in DrawCircle().

FillPolygon(w, x1, y1, [z1,] ...) : window draw filled polygon

FillPolygon(w,x1,y1,...,xn,yn) draws a filled polygon. The beginning and ending points are con-

nected if they are not the same. In 3D, FillPolygon() takes from 2-4 coordinates per vertex and

returns the list that represents the polygon on the display list for refresh purposes.

FillRectangle(w, x:0, y:0, width:0, height:0, ...) : window draw filled rectangle

FillRectangle(w,x,y,width,height,...) draws filled rectangles.

Font(w, s) : string font

Font(w) produces the name of the current font. Font(w,s) sets the window context’s font to s and

produces its name or fails if the font name is invalid. The valid font names are largely system-

dependent but follow the format family[,styles],size, where styles optionally add bold or italic or

both. Four font names are portable: serif (Times or similar), sans (Helvetica or similar), mono
(a mono spaced sans serif font) and typewriter (Courier or similar). Font() fails if the requested

font name does not exist.

FreeColor(w, s, ...) : window release colors

FreeColor(w,s1,...,sn) allows the window system to re-use the corresponding color map entries.

Whether this call has an effect is dependent upon the particular implementation. If a freed color

is still in use at the time it is freed, unpredictable results will occur.

GotoRC(w, row:1, col:1) : window go to row,column

GotoRC(w,row,col) moves the text cursor to a particular row and column, given in numbers of

characters; the upper-left corner is coordinate (1,1). The column calculation used by GotoRC()
assigns to each column the pixel width of the widest character in the current font. If the current

font is of fixed width, this yields the usual interpretation.

GotoXY(w, x:0, y:0) : window go to pixel

GotoXY(w,x,y) moves the text cursor to a specific cursor location in pixels.

IdentityMatrix(w) : record load the identity matrix

36

IdentityMatrix(w) changes the current matrix to the identity matrix on 3D window w. The display

list element is returned.

Lower(w) : window lower window

Lower(w) moves window w to the bottom of the window stack.

MatrixMode(w, s) : record set matrix mode

MatrixMode(w, s) changes the matrix mode to s on 3D window w. The string s must be either

“projection” or “modelview”; otherwise this procedure fails. The display list element is returned.

MultMatrix(w, L) : record multiply transformation matrix

MultMatrix(w, L) multiplies the current transformation matrix used in 3D window w by the 4x4

matrix represented as a list of 16 values L.

NewColor(w, s) : integer allocate mutable color

NewColor(w,s) allocates an entry in the color map and returns a small negative integer for this

entry, usable in calls to routines that take a color specification, such as Fg(). If s is specified, the

entry is initialized to the given color. NewColor() fails if it cannot allocate an entry.

PaletteChars(w, s) : string pallete characters

PaletteChars(w,s) produces a string containing each of the letters in palette s. The palletes “c1”

through“c6”define different color encodings of images represented as string data; see [Griswold98].

PaletteColor(w, p, s) : string pallete color

PaletteColor(w,s) returns the color of key s in palette p in “r ,g,b” format.

PaletteKey(w, p, s) : integer pallete key

PaletteKey(w,s) returns the key of closest color to s in palette p.

Pattern(w, s) : w define stipple pattern

Pattern(w,s) selects stipple pattern s for use during draw and fill operations. s may be either the

name of a system-dependent pattern or a literal of the form width,bits. Patterns are only used

when the fillstyle attribute is stippled or opaquestippled. Pattern() fails if a named pattern is not

defined. An error occurs if Pattern() is given a malformed literal.

Pending(w, x, ...) : L produce event queue

Pending(w) produces the list of events waiting to be read from window w. If no events are

available, the list is empty (its size is 0). Pending(w,x1,...,xn) adds x1 through xn to the end of

w’s pending list in guaranteed consecutive order.

Pixel(w, x:0, y:0, width:0, height:0) : i1...in generate window pixels

Pixel(w,x,y,width,height) generates pixel contents from a rectangular area within window w. width
* height results are generated starting from the upper-left corner and advancing down to the

bottom of each column before the next one is visited. Pixels are returned in integer values;

ordinary colors are encoded nonnegative integers, while mutable colors are negative integers that

were previously returned by NewColor(). Ordinary colors are encoded with the most significant

37

eight bits all zero, the next eight bits contain the red component, the next eight bits the green

component, and the least significant eight bits contain the blue component. Pixel() fails if part of

the requested rectangle extends beyond the canvas.

PopMatrix(w) : record pop the matrix stack

PopMatrix(w) pops the top matrix from either the projection or modelview matrix stack on 3D

window w, depending on the current matrix mode. This procedure fails if there is only one matrix

on the matrix stack. The display list element is returned.

PushMatrix(w) : record push the matrix stack

PushMatrix(w) pushes a copy of the current matrix onto the matrix stack on 3D window w. The

current matrix mode determines on what stack is pushed. This procedure fails if the stack is full.

The “projection” stack is of size two; the “modelview” stack is of size thirty two. The display list

element is returned.

PushRotate(w, a, x, y, z) : record push and rotate

PushRotate() is equivalent to PushMatrix() followed by Rotate().

PushScale(w, x, y, z) : record push and scale

PushScale() is equivalent to PushMatrix() followed by Scale().

PushTranslate(w, x, y, z) : record push and translate

PushTranslate() is equivalent to PushMatrix() followed by Translate().

QueryPointer(w) : x, y produce mouse position

QueryPointer(w) generates the x and y coordinates of the mouse relative to window w. If w is

omitted, QueryPointer() generates the coordinates relative to the upper-left corner of the entire

screen.

Raise(w) : window raise window

Raise(w) moves window w to the top of the window stack, making it entirely visible and possibly

obscuring other windows.

ReadImage(w, s, x:0, y:0) : integer load image file

ReadImage(w,s,x,y) loads an image from the file named by s into window w at offset x,y. x
and y are optional and default to 0,0. GIF, JPG, and BMP formats are supported, along with

platform-specific formats. If ReadImage() reads the image into w, it returns either an integer 0

indicating no errors occurred or a nonzero integer indicating that one or more colors required by

the image could not be obtained from the window system. ReadImage() fails if file s cannot be

opened for reading or is an invalid file format.

Refresh(w) : window redraw the window

Refresh(w) redraws the contents of window w. It is used mainly when objects have been moved

in a 3D scene. The window w is returned.

Rotate(w, a, x, y, z) : record rotate objects

38

Rotate(w, a, x, y, z,. . .) rotates subsequent objects drawn on 3D window w by angle a degrees, in

the direction (x,y,z). The display list element is returned.

Scale(w, x, y, z) : record scale objects

Scale(w, x, y, z,. . .) scales subsequent objects drawn on 3D window w according to the given

coordinates. The display list element is returned.

Texcoord(w, x, y, ...) : list define texture coordinates

Texcoord(W, x1, y1, . . . , xn, yn) sets the texture coordinates to x1, y1, . . . , xn, yn in 3D window

w. Each x, y, pair forms one texture coordinate. Texcoord(W, L) sets the texture coordinates to

those specified in the list L. Texcoord(W, s) sets the texture coordinates to those specified by s.

The string s must be “auto” otherwise the procedure will fail. In all cases the display list element

is returned.

TextWidth(w, s) : integer pixel width of text

TextWidth(w,s) computes the pixel width of string s in the font currently defined for window w.

Texture(w, s) : record apply texture

Texture(w, s) specifies a texture image that is applied to subsequent objects drawn on 3D window

w. The string s specifies the texture image as a filename, a string of the form width,pallet,data
or width,#,data, where pallet is a pallet from the Unicon 2D graphics facilities and data is the

hexadecimal representation of an image. Texture(w1, w2) specifies that the contents of 2D or 3D

window w2 be used as a texture image that is applied to subsequent objects on the window w1.

The display list element is returned.

Translate(w, x, y, z, ...) : record translate object positions

Translate(w, x, y, z,. . .) moves objects drawn subsequently on 3D window w in the direction

(x,y,z). The display list element is returned.

Uncouple(w) : window release binding

Uncouple(w) releases the binding associated with file w. Uncouple() closes the window only if all

other bindings associated with that window are also closed.

WAttrib(w, s1, ...) : x, ... generate or set attributes

WAttrib(w, s1, ...) retrieves and/or sets window and context attributes. If called with exactly one

attribute, integers are produced for integer-value attributes; all other values are represented by

strings. If called with more than one attribute argument, WAttrib() produces one string result per

argument, prefixing each value by the attribute name and an equals sign (=). If xi is a window,

subsequent attributes apply to xi. WAttrib() fails if an attempt is made to set the attribute font,
fg, bg, or pattern to a value that is not supported. A run-time error occurs for an invalid attribute

name or invalid value.

WDefault(w, program, option) : string query user preference

WDefault(w,program,option) returns the value of option for program as registered with the X

resource manager. In typical use this supplies the program with a default value for window

39

attribute option from a program.option entry in an .XDefaults file. WDefault() fails if no user

preference for the specified option is available.

WFlush(w) : window flush window output

WFlush(w) flushes window output on window systems that buffer text and graphics output. Win-

dow output is automatically flushed whenever the program blocks on window input. When this

behavior is not adequate, a call to WFlush() sends all window output immediately, but does not

wait for all commands to be received and acted upon. WFlush() is a no-op on window systems

that do not buffer output.

WindowContents(w) : list window display list

WindowContents(w) returns a list of display elements, which are records or lists. Each element

has a function name followed by the parameters of the function, or an attribute followed by its

value.

WriteImage(w, s, x:0, y:0, width:0, height:0) : window save image file

WriteImage(w,s,x,y,width,height) saves an image of dimensions width, height from window w at

offset x,y to a file named s. The default is to write the entire window. The file is written according

to the filename extension, in either GIF, JPG, BMP, PNG, or a platform specific format such as

XBM or XPM. WriteImage() fails if s cannot be opened for writing.

WSection(w, s) : record define window section

WSection(w,s) starts a new window section named s on 3D window w and returns a display list

section marker record. During window refreshes if the section marker’s skip field is 1, the section

is skipped. The section name s is produced by &pick if a primitive in the block is clicked on while

attribute “pick=on”. WSection(w) marks the end of a preceding section. WSection() blocks may

be nested.

WSync(w, s) : w synchronize with window system server

WSync(w,s) synchronizes the program with the server attached to window w on those window

systems that employ a client-server model. Output to the window is flushed, and WSync() waits

for a reply from the server indicating all output has been processed. If s is "yes", all events

pending on w are discarded. WSync() is a no-op on window systems that do not use a client-

server model.

8 Preprocessor

Unicon features a simple preprocessor that supports file inclusion and symbolic constants. It

is a subset of the capabilities found in the C preprocessor, and is used primarily to support

platform-specific code sections and large collections of symbols.

8.1 Preprocessor commands

Preprocessor directives are lines beginning with a dollar sign. The available preprocessor com-

mands are:

40

$define symbol text symbolic substitution

All subsequent occurrences of symbol are replaced by the text within the current file. Note that

$define does not support arguments, unlike C.

$include filename insert source file

The named file is inserted into the compilation in place of the $include line.

$ifdef symbol conditional compilation

$ifndef symbol conditional compilation

$else conditional alternative

$endif end of conditional code

The subsequent lines of code, up to an $else or $endif, are discarded unless symbol is defined

by some $define directive. $ifndef reverses this logic.

$error text compile error

The compiler will emit an error with the supplied text as a message.

$line number [filename] source code line #line number [filename] source code line

The subsequent lines of code are treated by the compiler as commencing from line number in the

file filename or the current file if no filename is given.

$undef symbol remove symbol definition

Subsequent occurrences of symbol are no longer replaced by any substitute text.

EBCDIC transliterations alternative bracket characters

These character combinations were introduced for legacy keyboards that were missing certain

bracket characters.

$ for {
$) for }
$< for [
$> for]

These character combinations are substitutes for curly and square brackets on keyboards that

do not have these characters.

8.2 Predefined symbols

Predefined symbols are provided for each platform and each feature that is optionally compiled

in on some platforms. These symbols include:

Preprocessor Symbol Feature

V9 Version 9

AMIGA Amiga

ACORN Acorn Archimedes

CMS CMS

41

MACINTOSH Macintosh

MSDOS 386 MS-DOS/386

MS WINDOWS NT MS Windows NT

MSDOS MS-DOS

MVS MVS

OS2 OS/2

PORT PORT

UNIX UNIX

POSIX POSIX

DBM DBM

VMS VMS

ASCII ASCII

EBCDIC EBCDIC

CO EXPRESSIONS co-expressions

CONSOLE WINDOW console window

DYNAMIC LOADING dynamic loading

EVENT MONITOR event monitoring

EXTERNAL FUNCTIONS external functions

KEYBOARD FUNCTIONS keyboard functions

LARGE INTEGERS large integers

MULTITASKING multiple programs

PIPES pipes

RECORD IO record I/O

SYSTEM FUNCTION system function

MESSAGING messaging

GRAPHICS graphics

X WINDOW SYSTEM X Windows

MS WINDOWS MS Windows

WIN32 Win32

PRESENTATION MGR Presentation Manager

ARM FUNCTIONS Archimedes extensions

DOS FUNCTIONS MS-DOS extensions

9 Execution Errors

There are two kinds of errors that can occur during the execution of an Icon program: runtime

errors and system errors. Runtime errors occur when a semantic or logic error in a program results

in a computation that cannot perform as instructed. System errors occur when an operating

system call fails to perform a required service.

42

9.1 Runtime errors

By default, a runtime error causes program execution to abort. Runtime errors are reported by

name as well as by number. They are accompanied by an error traceback that shows the procedure

call stack and value that caused the error, if there is one. The errors are listed below to illustrate

the kinds of situations that can cause execution to terminate.

The keyword &error turns runtime errors into expression failure. When an expression fails due

to a converted runtime error, the keywords &errornumber, &errortext, and &errorvalue provide

information about the nature of the error.

101 integer expected or out of range

102 numeric expected

103 string expected

104 cset expected

105 file expected

106 procedure or integer expected

107 record expected

108 list expected

109 string or file expected

110 string or list expected

111 variable expected

112 invalid type to size operation

113 invalid type to random operation

114 invalid type to subscript operation

115 structure expected

116 invalid type to element generator

117 missing main procedure

118 co-expression expected

119 set expected

120 two csets or two sets expected

121 function not supported

122 set or table expected

123 invalid type

124 table expected

125 list, record, or set expected

126 list or record expected

140 window expected

141 program terminated by window manager

142 attempt to read/write on closed window

143 malformed event queue

144 window system error

145 bad window attribute

146 incorrect number of arguments to drawing function

147 window attribute cannot be read or written as requested

43

160 cannot open file

161 bad file attribute

162 cannot open socket

170 string or integer expected

171 posix header file not included

172 posix record overridden by global value

173 directory opened for writing

174 directory or database invalid as file

175 invalid mode string

176 invalid signal

177 invalid operation to flock/fcntl

178 invalid procedure type

179 fdup of closed file

180 low-level read or select mixed with buffered read

181 not a network connection

182 not a UDP socket

183 invalid protocol name

184 invalid permission string for umask

190 database expected

201 division by zero

202 remaindering by zero

203 integer overflow

204 real overflow, underflow, or division by zero

205 invalid value

206 negative first argument to real exponentiation

207 invalid field name

208 second and third arguments to map of unequal length

209 invalid second argument to open

210 non-ascending arguments to detab/entab

211 by value equal to zero

212 attempt to read file not open for reading

213 attempt to write file not open for writing

214 input/output error

215 attempt to refresh &main

216 external function not found

301 evaluation stack overflow

302 memory violation

303 inadequate space for evaluation stack

304 inadequate space in qualifier list

305 inadequate space for static allocation

306 inadequate space in string region

307 inadequate space in block region

308 system stack overflow in co-expression

44

401 co-expressions not implemented

402 program not compiled with debugging option

500 program malfunction

600 vidget usage error

9.2 System errors

If an error occurs during the execution of a system function, by default the function fails and

keywords &errornumber, &errortext and &errorvalue will be set. This contrasts with runtime

errors, which terminate execution by default. Whereas runtime errors can be converted to failure

by setting &error, system errors can be converted to a runtime error by setting keyword &syserr

to a non-null value.

The complete set of system errors is by definition platform specific. Error numbers above the

value 1000 are used for system errors. Many of the POSIX standard system errors are supported

across platforms, and error numbers between 1001 and 1040 are reserved for the system errors

listed below. Platforms may report other system error codes so long as they do not conflict with

existing runtime or system error codes.

1001 Operation not permitted

1002 No such file or directory

1003 No such process

1004 Interrupted system call

1005 I/O error

1006 No such device or address

1007 Arg list too long

1008 Exec format error

1009 Bad file number

1010 No child processes

1011 Try again

1012 Out of memory

1013 Permission denied

1014 Bad address

1016 Device or resource busy

1017 File exists

1018 Cross-device link

1019 No such device

1020 Not a directory

1021 Is a directory

1022 Invalid argument

1023 File table overflow

1024 Too many open files

1025 Not a typewriter

1027 File too large

1028 No space left on device

45

1029 Illegal seek

1030 Read-only file system

1031 Too many links

1032 Broken pipe

1033 Math argument out of domain of func

1034 Math result not representable

1035 Resource deadlock would occur

1036 File name too long

1037 No record locks available

1038 Function not implemented

1039 Directory not empty

46

	Introduction
	Immutable Types
	Integer
	Real
	String
	Cset

	Mutable Types
	List
	Table
	Set
	Record
	Object
	File

	Variables
	Global
	Local
	Static
	Class

	Keywords
	Graphics keywords

	Control Structures and Reserved Words
	Operators and Built-in Functions
	Operators
	Unary operators
	Binary operators
	Built-in functions
	Graphics functions

	Preprocessor
	Preprocessor commands
	Predefined symbols

	Execution Errors
	Runtime errors
	System errors

