
Mailcrypt: An EMACS Interface to PGP
Version 3.5.9
2010-02-14

Patrick J. LoPresti <patl@lcs.mit.edu>
Leonard R. Budney <lbudney@pobox.com>

Brian Warner <warner@lothar.com>

Copyright c© 1995 Patrick J. LoPresti

Copyright c© 1998 Leonard R. Budney

Copyright c© 2001 Brian Warner

The Mailcrypt program and this documentation are published as free software. You may
redistribute and/or modify them under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2, or (at your option) any later
version.

Mailcrypt is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with GNU
Emacs; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass
Ave, Cambridge, MA 02139, USA.

1

1 Introduction

Mailcrypt is an Emacs Lisp package which provides a simple but powerful interface to cryp-
tographic functions for mail and news. With Mailcrypt, encryption becomes a seamlessly
integrated part of your mail and news handling environment.

This manual is long because it is complete. All of the information you need to get started
is contained in this Introduction alone.

1.1 Prerequisites

Mailcrypt requires version 19 or higher of GNU Emacs. Mailcrypt has been tested on a
variety of systems under both FSF Emacs and XEmacs.

Mailcrypt requires Pretty Good (tm) Privacy, usually known as PGP. This document
assumes that you have already obtained and installed PGP and that you are familiar with
its basic functions. The best way to become familiar with these functions is to read the
PGP User’s Guide, at least Volume I.

For more information on obtaining and installing PGP, refer to the MIT PGP home
page at http://web.mit.edu/network/pgp.html.

Although Mailcrypt may be used to process data in arbitrary Emacs buffers, it is most
useful in conjunction with other Emacs packages for handling mail and news. Mailcrypt
has specialized support for Rmail (see Section “Reading Mail with Rmail” in The GNU
Emacs Manual), VM (see Section “Introduction” in The VM User’s Manual), MH-E, and
Gnus (see Section “Overview” in The Gnus Manual). Information on the general use of
these packages is beyond the scope of this manual.

1.2 Installation

If Mailcrypt is not installed on your system, obtain the latest version from the Mailcrypt
home page at http://mailcrypt.sourceforge.net and follow the instructions in the file
INSTALL.

Next, decide what version of PGP you are using. Versions 3.5 and higher of Mailcrypt
support multiple versions of PGP. To choose a version, add the following lines to your
.emacs file:

(load-library "mailcrypt") ; provides "mc-setversion"

(mc-setversion "2.6") ; for PGP 2.6 (default); also "5.0" and "gpg"

Next, teach your Emacs how and when to load the Mailcrypt functions and install the
Mailcrypt key bindings. Almost all Emacs major modes (including mail and news handling
modes) have corresponding "hook" variables which hold functions to be run when the mode
is entered. All you have to do is add the Mailcrypt installer functions to the appropriate
hooks; then the installer functions will add the Mailcrypt key bindings when the respective
mode is entered.

Specifically, begin by placing the following lines into your .emacs file (or the system-wide
default.el file):

(autoload ’mc-install-write-mode "mailcrypt" nil t)

(autoload ’mc-install-read-mode "mailcrypt" nil t)

Chapter 1: Introduction 2

(add-hook ’mail-mode-hook ’mc-install-write-mode)

Then add additional lines for your own mail and news packages as described below.

1.2.1 Hooking into Rmail

To hook Mailcrypt into Rmail, use the following lines:

(add-hook ’rmail-mode-hook ’mc-install-read-mode)

(add-hook ’rmail-summary-mode-hook ’mc-install-read-mode)

Using Emacs version 20.3 or higher, you should use the following lines instead:

(add-hook ’rmail-show-message-hook ’mc-install-read-mode)

(add-hook ’rmail-summary-mode-hook ’mc-install-read-mode)

1.2.2 Hooking into VM

To hook Mailcrypt into VM, use the following lines:

(add-hook ’vm-mode-hook ’mc-install-read-mode)

(add-hook ’vm-summary-mode-hook ’mc-install-read-mode)

(add-hook ’vm-virtual-mode-hook ’mc-install-read-mode)

(add-hook ’vm-mail-mode-hook ’mc-install-write-mode)

1.2.3 Hooking into MH-E

To hook Mailcrypt into MH-E, use the following lines:

(add-hook ’mh-folder-mode-hook ’mc-install-read-mode)

(add-hook ’mh-letter-mode-hook ’mc-install-write-mode)

1.2.4 Hooking into Gnus

To hook Mailcrypt into Gnus, use the following lines:

(add-hook ’gnus-summary-mode-hook ’mc-install-read-mode)

(add-hook ’message-mode-hook ’mc-install-write-mode)

(add-hook ’news-reply-mode-hook ’mc-install-write-mode)

1.2.5 Hooking into Mew

To hook Mailcrypt into Mew, use the following lines:

(add-hook ’mew-message-mode-hook ’mc-install-read-mode)

(add-hook ’mew-summary-mode-hook ’mc-install-read-mode)

(add-hook ’mew-draft-mode-hook ’mc-install-write-mode)

Note that Mew already has extensive support for MIME-encoded encrypted and/or
signed messages (using the “multipart/encrypted” and “application/pgp-encrypted” for-
mats specified by RFC3156). Using MailCrypt within Mew is most useful for traditional
“inline” armored encrypted/signed messages.

1.3 Command Overview

All Mailcrypt commands are (by default) activated by three-character key sequences which
begin with C-c /. The most common operations are:

Chapter 2: General Use 3

Encrypting a Message
C-c / e encrypts a message using the recipient’s (or recipients’) public key(s).
See Section 2.1 [Encrypting a Message], page 4.

Decrypting a Message
C-c / d decrypts a message using your secret key. See Section 2.4 [Decrypting
a Message], page 5.

Signing a Message
C-c / s clearsigns a message using your secret key. See Section 2.2 [Signing a
Message], page 4.

Verifying a Signature
C-c / v verifies the signature on a clearsigned message using the sender’s public
key. See Section 2.5 [Verifying a Signature], page 6.

These functions and others are documented in detail in the following chapters.

Any time you are composing or reading mail or news, you can get a summary of the
available commands by typing C-h m. If you are running Emacs under X, an even easier
way to see the available commands is to access the Mailcrypt pull-down menu.

2 General Use

By default, Mailcrypt assumes you are using one of the PGP 2.6.x versions. This permits
backward compatibility for the millions of satisfied users of Mailcrypt 3.4 worldwide. If you
wish to specify a different version of PGP, use the mc-setversion function. Its action is
the same as setting the variable mc-default-scheme. For a list of supported versions, press
the tab key. “2.6” means 2.6.x, the original (and default). “5.0” is pgp 5.0. “6.5” is pgp
6.5. “gpg” is GnuPG.

Mailcrypt works by providing two minor modes for interfacing with cryptographic func-
tions: mc-read-mode and mc-write-mode. mc-read-mode provides key bindings for process-
ing messages which you have received; mc-write-mode provides key bindings for processing
messages which you are about to send. These minor modes will indicate when they are
active by placing a characteristic string in the mode line (see Section 6.3 [Mode Line],
page 19). They will also add a Mailcrypt pull-down menu to the menu bar.

The normal installation procedure (see Section 1.2 [Installation], page 1) will arrange for
the appropriate mode to be active when you read and compose mail and news. But you
may want to use Mailcrypt’s functions at other times; to do so, you can call mc-install-
read-mode or mc-install-write-mode directly. For example, if you were editing a file in
Text mode and wanted to digitally sign it, you would type M-x mc-install-write-mode,
then C-c / s (see Section 2.2 [Signing], page 4).

Once one of the Mailcrypt modes is active, you can get a summary of the available
functions by typing C-h m or by examining the Mailcrypt pull-down menu.

The description of each function below includes which of the modes has a binding for
that function.

Chapter 2: General Use 4

2.1 Encrypting a Message

The function mc-encrypt will encrypt a message in the current buffer. mc-write-mode

binds this function to C-c / e by default.

When this function is called, Mailcrypt will prompt you for a comma-separated list of
recipients. If called from a mail composition buffer, the recipient list will default to the
Email addresses in the ‘To’, ‘CC’, and ‘BCC’ lines of the message.

If you want to be able to decrypt the message yourself, you need to add yourself to the
recipient list. If you always want to do so, set the variable mc-encrypt-for-me to t. (Note
that Mailcrypt overrides the PGP "encrypttoself" flag; use this variable instead.)

If you provide an empty recipient list, Mailcrypt will ASCII-armor the message without
encrypting it.

Once you have edited the recipient list to your satisfaction, type RET to accept it. You
will then be asked whether you want to sign the message; answer y or n. You can avoid this
question by setting the variable mc-pgp-always-sign: A value of t means "yes", a value
of ’never means "no".

If you elect to sign the message, Mailcrypt will prompt you for the appropriate passphrase
unless it is cached (see Chapter 4 [Passphrase Cache], page 15).

Mailcrypt will then pass the message to PGP for processing. Mailcrypt will call the
functions listed in mc-pre-encryption-hook and mc-post-encryption-hook immediately
before and after processing, respectively. The encrypted message will then replace the
original message in the buffer. You can undo the encryption with the normal Emacs undo
command C-x u (see Section “Undoing Changes” in The GNU Emacs Manual).

If an error occurs, Mailcrypt will display an appropriate diagnostic. If you do not have
the public key for one of the specified recipients, Mailcrypt will offer to try to fetch it for
you (see Chapter 5 [Key Fetching], page 16).

If you want to use a secret key other than your default for signing the message, pass a
prefix argument to mc-encrypt. (That is, type C-u C-c / e.) Mailcrypt will prompt for a
string and will sign with the first key on your secret keyring which matches that string. It
will be assumed that you want to sign the message, so you will not be prompted. See the
next section, Section 2.2 [Signing a Message], page 4, for information about which key is
used by default to sign the message.

2.2 Signing a Message

The function mc-sign will clearsign a message in the current buffer. mc-write-mode binds
this function to C-c / s by default.

When this function is called, Mailcrypt will prompt you for the appropriate passphrase
unless it is cached (see Chapter 4 [Passphrase Cache], page 15).

Mailcrypt will then pass the message to PGP for processing. Mailcrypt will call the
functions listed in mc-pre-signature-hook and mc-post-signature-hook immediately
before and after processing, respectively. The signed message will replace the original
message in the buffer. Do not edit the message further with the signature attached, because
the signature would then be incorrect. If you discover you need to edit a message after you
have signed it, remove the signature first with the normal Emacs undo command C-x u (see
Section “Undoing Changes” in The GNU Emacs Manual).

Chapter 2: General Use 5

The variable mc-pgp-user-id controls which secret key is used for signing. To use
a different secret key, pass a prefix argument to mc-sign. (That is, type C-u C-c / s.)
Mailcrypt will prompt for a string and will sign with the first key on your secret keyring
which matches that string.

The default key for signing is the first one on the secret key ring which matches the
string mc-pgp-user-id; this defaults to (user-login-name). Note that this differs from
PGP’s normal default, which is to use the first of all of the secret keys. To mimic PGP’s
behavior, set this variable to "". This variable is specific to pgp 2.6.x; mc-pgp50-user-id
and mc-gpg-user-id are the corresponding variables for pgp 5.0 and GnuPG.

If you have multiple secret keys with the same name (perhaps you generate a new key
every few years, but keep the expired keys on your secret key ring so you can decrypt old
messages), you may want to use a hex keyid in mc-gpg-user-id or equivalent. A simple
name will cause mailcrypt to use the first matching secret key, which may not be the most
recent one. Using a hex keyid will force the encryption program to use that exact secret
key for signing. Put something like the following in your .emacs:

(setq mc-gpg-user-id "0x03A5E108")

2.3 Inserting a Public Key Block

The function mc-insert-public-key will extract a key from your public keyring and insert
it into the current buffer. mc-write-mode binds this function to C-c / x by default.

This function is useful for sending your public key to someone else or for uploading it
to the key servers (see Section 9.2 [Key Servers], page 22). The inserted key will be the
first one on your public key ring which matches the string mc-pgp-user-id (see Section 2.1
[Encrypting a Message], page 4).

You may want to insert a different public key instead; for example, you may have signed
someone’s key and want to send it back to them. To do so, pass a prefix argument to
mc-insert-public-key. (That is, type C-u C-c / x.) You will be prompted for a string;
the first key on your public key ring which matches that string will be inserted.

2.4 Decrypting a message

The function mc-decrypt will decrypt a message in the current buffer. mc-read-mode binds
this function to C-c / d by default.

When this function is called, Mailcrypt will prompt you for the appropriate passphrase
unless it is cached (see Chapter 4 [Passphrase Cache], page 15).

The encrypted message will then be passed to PGP for processing. If you are not in a
mail buffer, the decrypted message will replace the encrypted form. If you are in a mail
buffer, you will be prompted whether to do the replacement.

If you answer n, you will be placed in a new mail reading buffer to view the decrypted
message. This new mail reading buffer will have no corresponding disk file; its purpose is
to provide you with all of your usual reply and citation functions without requiring you to
save the message in decrypted form. Type q to kill this buffer.

You can avoid the question of whether to replace the encrypted message by setting the
variable mc-always-replace. A value of t means "yes"; a value of ’never means "no".

Chapter 3: Remailer Support 6

If the encrypted message is also signed, PGP will attempt to verify the signature. If the
verification fails because you lack the necessary public key, Mailcrypt will offer to fetch it
for you (see Chapter 5 [Key Fetching], page 16).

Look in the *MailCrypt* buffer to see the result of the signature verification.

2.5 Verifying a Signature

The function mc-verify will verify the cleartext signature on a message in the current
buffer. mc-read-mode binds this function to C-c / v by default.

When this function is called, Mailcrypt will pass the message to PGP for processing and
report whether or not the signature verified.

If the signature failed to verify because you lack the necessary public key, Mailcrypt will
offer to fetch it for you (see Chapter 5 [Key Fetching], page 16).

2.6 Snarfing a Key

The function mc-snarf will add to your keyring any keys in the current buffer. mc-read-

mode binds this function to C-c / a by default.

This function is useful when someone sends you a public key in an Email message.

3 Remailer Support

This is a long chapter describing an advanced feature; you may want to skip it on first
reading.

3.1 Remailer Introduction

There are several anonymous remailer services running on the Internet. These are programs
that accept mail, strip off information that would identify the origin of the message, and
forward the mail to the designated recipient. This simple scheme alone, however, is insecure
if the anonymous remailer becomes compromised (or if the remailer was set up by an
untrustworthy party in the first place). Whoever controls the remailer will have access to
the identities of senders and recipients.

One solution to this is to use chains of remailers that send encrypted messages. For
example, suppose Bill wishes to send a message to Louis using a chain of remailers A, B,
and C. He writes the message (possibly encrypting it for Louis), then encrypts the result
(including the fact that Louis is the recipient) using a public key supplied by remailer C.
Then he encrypts this result using a public key supplied by remailer B. Then he encrypts
this result using a public key supplied by A and sends the message to A.

When A receives the message, it decrypts the message with its key to produce something
encrypted for B, learns that the next remailer in the chain is B, strips off the information
that the message came from Bill, and sends the message on to B. B then decrypts, learns
that the next remailer in the chain is C, strips off the information that the message came
from A, and sends the result to C. C then decrypts, learns that the destination is Louis,
strips off the information that the message came from B, and sends the result to Louis.
With this arrangement, only A knows that the original message came from Bill, and only

Chapter 3: Remailer Support 7

C knows that the intended recipient is Louis. In general, the sender and recipient can both
be known only to someone who has compromised all remailers in the chain.

If Bill wishes, he can include an encrypted "response block" in his message to Louis,
which defines a remailer chain that Louis can use to reply to Bill. Louis can use this
chain without knowing who Bill is – only the last remailer in the chain need know the final
recipient. Bill can also establish a pseudonym for use in signing his anonymous messages.

More sophisticated systems split the message into multiple pieces to further disguise
the path it takes through the network. Special client programs are used to construct and
encrypt the pieces.

Mailcrypt includes facilities for sending messages via remailers, for defining chains of
remailers, for generating response blocks, for using pseudonyms, and for interfacing with
remailer client programs.

3.2 Types of Remailers

There are currently three classes of remailer networks in use, not counting the original
single-hop address-rewriter machines (like the late penet.fi).

Cypherpunk (Type 1)
Machines in the original cypherpunk remailer network accept messages with
commands to send a portion of the message out to another machine. By wrap-
ping the final message text in layers of encryption like an onion, the message is
sent through chains of remailers, each machine decrypting one layer and sending
the rest out to the next hop.

One disadvantage of this scheme is that the message gets smaller by a fairly
constant amount on each hop, making traffic analysis easier to perform.

Mailcrypt automates the process of wrapping your final message in layers of
encryption for each remailer along the desired chain. Type 1 remailers are
handled by mc-remailer-scheme-type1.

Mixmaster (Type 2)
The next generation of remailers use a special client program (written in C)
to encode the message differently. The message is broken up into multiple
identically-sized pieces, which follow separate paths through the network, and
are recombined at the far end. At each hop, random padding is added to
make sure that all inter-node messages are exactly the same size. This makes
traffic analysis more difficult. Periodic dummy messages are also sent to further
complicate attacks.

The most common type-2 client program for Unix is named “mixmaster”. There
are two different versions, with fairly different interfaces. Mailcrypt supports
both.

The older version comes from a package named “mix-2.0.3”, and has an inter-
face that modifies a message in-place. The mailcrypt interface to this is through
mc-remailer-scheme-type1 and behaves much like the normal encryption in-
terface: you hit the button and your email is modified in place; the To: header
is replaced with the target of the first remailer in the chain. As you can imagine,
this API is problematic, as large messages must be split into multiple pieces.

Chapter 3: Remailer Support 8

The modern type-2 client program is an updated version of “mix-
master”, from a package named “mixmaster-2.9.0” (distributed at
http://mixmaster.sourceforge.net/. This version does not modify the
message in place; rather it accepts an email message on stdin and sends
the resulting series of packets directly. The mailcrypt interface to the new
mixmaster is through mc-remailer-scheme-mixmaster. When you chose
“encrypt for remailer” within this scheme, the message is sent directly to
the client program and delivered immediately, bypassing your MUA mode’s
normal “send” command.

Mixminion (Type 3, under development)
A new generation of remailer networks is under currently development (at
http://www.mixminion.net/). One notable improvement is the addition of
automatic reply blocks. A major flaw of the type-2 network is that to give
someone the ability to reply to a message, you have to give them a type-1 reply
block. This makes the response more vulnerable to traffic analysis. Mixminion
message can be formed in such a way that the response path is automatically
embedded in the outgoing message.

Mixminion uses a client program (called “mixminion”) which behaves just like
the modern “mixmaster” client. Through mc-remailer-scheme-mixminion,
mailcrypt supports a command to send the body of the current message to the
mixminion client.

Mixminion is under development, please check the web page for the current
status before using it.

The remailer scheme currently in use is determined by the mc-default-remailer-

scheme variable. Set this to one of mc-remailer-scheme-type1, mc-remailer-scheme-
mixmaster, or mc-remailer-scheme-mixminion. For example, use the following in your
.emacs to make C-c / r always use the modern mixmaster client:

(setq mc-default-remailer-scheme ’mc-remailer-scheme-mixmaster)

3.3 Remailer Quick Start

To use Mailcrypt’s remailing facilities, you need to configure them first. Begin with the
following steps:

1. Download Levien-format list of remailers from http://www.tahina.priv.at/~cm/stats/rlist.txt

(as of 2007-03-01) and save the file to ‘~/.remailers’. See the variable mc-levien-

file-name to chnage the file name anad location. Mailcrypt will parse this the first
time you access a remailer function.

2. Look over the .remailers file and find the ones you want to use. The lines that list
remailers and their capabilities look like ones below. It is best to consuts remailer
statistics page to determine the most reliable candidats for chaining.

$remailer{"frell"} = "..."

$remailer{"starwars"} = "..."

3. Add their PGP public keys to your keyring. You can for an armored keyring full
of remailer public keys. Note that Mailcrypt requires that you have the public keys

Chapter 3: Remailer Support 9

of all the remailers you want to use, and therefore that the remailers support PGP
encryption.

The list of remailers and their keys (as of 2007-03-01) can be found at
http://www.noreply.org/echolot/thesaurus/. With gpg, after each key has
been saved to a file, the entries can be imported into separate public keyring with
command:

gpg --no-options --no-default-keyring \

--keyring ~/.gnupg/pubring-remailer.gpg \

--import *.key

In order for gpg to use separate keyring, the new keyring file must be configured to
~/.gnupg/gpg.conf by adding this line:

keyring pubring-remailer.gpg

Note: Downloading the remailer list and their keys need only be done once,
although repeating them from time to time is probably a good idea, since re-
mailers come and go.

Now test the remailer functions. First compose an outgoing Email message (using C-x

m, for example) addressed to yourself. Type C-c / r. Choose a remailer; use TAB to get
completion on its name. The buffer will be rewritten for anonymous mailing through that
remailer.

Note that you can only select a single remailer when you rewrite the message. To send
the message through multiple hops, either rewrite the message multiple times, or define
a chain of remailers that can be referred to like a single remailer. Remailer chains are
described in the next section.

3.4 Remailer Chains

mc-write-mode binds the function mc-remail to the key C-c / r. Depending upon the
current remailer scheme, this function may pass the message directly to a remailer client, or
may simply rewrite the message for a remailer or chain. For “type1” remailers, the resulting
buffer is just a new Email message, so it can itself be rewritten for another remailer; this is
one way to manually construct a remailer chain.

Mailcrypt also has powerful facilities for defining automatic chains. We will start with
an example. Suppose you have put the following into your .emacs file:

(setq mc-remailer-user-chains

’(("Foo" "alumni" "robo")

("Bar" (shuffle-vector ["replay" "flame" "spook"]))

("Baz" "Foo" "Bar" "rahul" "Bar")

("Quux" 4)))

This code defines four chains. The first is named "Foo" and consists of "alumni" and
"robo", in that order. The second is named "Bar" and consists of "replay", "flame", and
"spook" in some random order (a different order will be chosen each time the chain is used).
The third is named "Baz" and consists of 9 remailers: The two from "Foo", followed by a
permutation of the three from "Bar", followed by "rahul", followed by another permutation
of the three from "Bar". Finally, the fourth is named "Quux" and consists of a random
permutation of the four best remailers as ordered in the ~/.remailers file.

Chapter 3: Remailer Support 10

Now whenever you are prompted for a "remailer or chain", the chains "Foo", "Bar",
"Baz", and "Quux" will be available, including TAB completion on their names. By capi-
talizing their names, you guarantee they will show up near the top of the completion list if
you type TAB on an empty input.

Now for the gritty details. mc-remailer-user-chains is a list of chain definitions. A
chain definition is a list whose first element is the name (a string) and whose remaining
elements form a remailer list. Each element of a remailer list is one of the following:

1. A raw remailer structure. This is the base case, but you will probably never want nor
need to deal with these directly.

2. A string naming another remailer chain to be spliced in at this point.

3. A positive integer N representing a chain to be spliced in at this point and consisting
of a random permutation of the top N remailers as ordered in the ~/.remailers file.

4. An arbitrary Emacs Lisp form, which should return another remailer list which will be
spliced in at this point and recursively evaluated. Mmmm, Lisp.

So, in the example "Bar" above, shuffle-vector is actually a Lisp primitive which
returns a random permutation of the argument vector. (Which brings up a side note: A
remailer list can be a vector instead of a list if you like.)

So where do the definitions for "replay" etc. come from?

There is another variable, mc-remailer-internal-chains, which has the same format
as mc-remailer-user-chains. In fact, the concatenation of the two is always used in-
ternally when resolving chains by name. The "internal chains" are normally generated
automatically from a Levien-format remailer list, which lives in ~/.remailers by default
and is parsed at startup time. The parser creates several chains, each containing a single
remailer, and names each chain after the respective remailer.

Thus "replay" (for example) is actually the name of a chain whose single element is the
remailer at <remailer@replay.com>. So "replay" is a valid name of a chain to include in the
definition of another chain, as was done above in the definition of "Bar".

3.5 Response Blocks

Mailcrypt can generate a response block for you. Just type C-c / b in an outgoing mail
buffer. That will prompt you for a chain to use, and will insert the response block at point.
Note that you can use any chain you want for your response block; it need not be related
to the chain you (later) use to remail the message.

If instead you type C-u C-c / b, you will be dropped into a recursive edit of the innermost
part of the response block. This text is what you will see at the top of the message when
the response block is used. This text is the only way to identify the response block, since
it will be used to mail you through anonymous remailers.

You probably won’t need to use the C-u feature, since by default the response block
contains the date, ‘To’ field, and ‘From’ field of the message you are composing. However,
if you want your response block to point to a USENET newsgroup instead of your Email
address, you may edit the innermost part of the response block to have a ‘Newsgroups’ line
instead of a ‘To’ line.

Inserting a response block also updates the ‘Reply-to’ hashmark header field. So, when
your recipient replies to your message, the reply will automatically be addressed properly.

Chapter 3: Remailer Support 11

This only works if the last remailer in the chain used to encrypt the message supports
hashmarks (the response block chain doesn’t matter). If the last remailer does not support
hashmarks, Mailcrypt will generate an error when you try to use the chain.

Note that you should insert your response block before you encrypt the message for
remailing. Also, see Section 3.10 [Remailer Security], page 14.

3.6 Pseudonyms

Mailcrypt supports pseudonyms. Type C-c / p in an outgoing message buffer and you will
be prompted for a pseudonym to use. Your pseudonym will show up in the ‘From’ line
that the recipient sees. Your pseudonym may either be a complete ‘From’ line (including
an Email address), or just a full name (with no Email address). In the latter case, the
Email address will automatically be set to <x@x.x>, an invalid address designed to prevent
sendmail from going rewrite-happy.

If you have one or more pseudonyms which you normally use, and you aren’t afraid of
revealing them if your account is compromised, you can set up a default list of pseudonyms
with lines like the following in your .emacs file:

(setq mc-remailer-pseudonyms

’("Elvis Presley" "Vanna White" "Charles Manson"))

Then those names will be available for completion when you are prompted for your
pseudonym.

You should insert your pseudonym before you insert a response block, so that the re-
sponse block will contain the ‘From’ line as well as the ‘To’ line. That way you can tell who
you were pretending to be when you get a reply to your message.

Note: Many remailers do not support pseudonyms. In addition, the Levien format does
not (yet) indicate which do and which do not, so Mailcrypt can’t warn you when your
pseudonym isn’t going to work. The only way to be sure is to send yourself a test message,
and to try different remailers until you find one or more which work. On the bright side,
only the last remailer in the chain needs to provide such support; none of the others matter.

3.7 Remailing Posts

Mailcrypt knows how to rewrite USENET posts for anonymous or pseudonymous remailing.
Just compose your post or followup normally, and use C-c / r to rewrite it for a remailer
chain. You don’t even need to start your newsreader to make a post; you can just compose
a message in mail mode and replace the ‘To’ line with a ‘Newsgroups’ line before doing C-c

/ r.

Mailcrypt will generate an error if the last remailer in the chain does not have both the
post and hash (hashmarks) properties. The hashmarks are used to preserve ‘References’
and similar headers, so your anonymous or pseudonymous followups will thread properly.
The variable mc-remailer-preserved-headers controls which headers are preserved when
rewriting a message, but you should not need to change it since the default value is reason-
able.

Before rewriting, you can use C-c / p to insert your pseudonym, and C-c / b to insert
your response block, just like when composing mail. In this case, the response block will

Chapter 3: Remailer Support 12

include the ‘From’ line and the ‘Newsgroups’ line (which is the news analogue to the ‘To’
line).

3.8 Mixmaster Support

(note: this chapter describes mailcrypt’s support for the “old” mixmaster interface. For a
description of mailcrypt’s support for the modern mixmaster client see Section 3.9 [Mix-
master and Mixminion], page 13.)

Mixmaster is a newer type of remailer which provides excellent security against traffic
analysis and replay attacks. (For more information on these attacks and Mixmaster, see
Lance Cottrell’s FAQ at http://mixmaster.sourceforge.net/faq.shtml.

If you do not use Mixmaster, you may skip this section entirely; Mailcrypt’s default
configuration treats Mixmaster as if it did not exist.

If you have the Mixmaster executable installed, you can tell Mailcrypt to use it by placing
lines like the following into your .emacs file:

(setq mc-mixmaster-path "mixmaster")

(setq mc-mixmaster-list-path "/foo/bar/baz/type2.list")

mc-mixmaster-path is a string representing the Mixmaster executable. mc-mixmaster-
list-path is the complete path to the type2.list file.

Once these variables are defined, (and if the remailer scheme is set mc-remailer-scheme-
type1, see Section 3.2 [Types of Remailers], page 7), Mailcrypt will automatically try to
use the Mixmaster executable whenever possible. Specifically, when you rewrite a message
for a chain, Mailcrypt will find maximal length sub-chains which have the mix property and
will use the Mixmaster executable to rewrite for those sub-chains.

This allows arbitrary intermingling of Mixmaster and normal (also called Type 1) re-
mailers, but you should note that this is not recommended. The recommended procedure is
to have a single Mixmaster sub-chain which is most or all of the whole chain.

There are advantages and disadvantages to having the Mixmaster sub-chain at the end
of the whole chain. The primary advantage is that Mixmaster remailers support multi-
ple recipients. The primary disadvantages are that they do not support pseudonyms nor
posting.

So here, as always, it is the last element of the chain which needs to support the special
features you want. In general, the remaining elements do not matter, and the superior
security of Mixmaster remailers is a good argument for using them for the bulk of your
chains.

Mixmaster remailers also have a "Type 1 compatibility mode" which you might want to
invoke to use a pseudonym or make a post. You can do this with the function mc-demix.
Here is an example of its use:

(setq mc-remailer-user-chains

’(("Foo" "vishnu" "spook")

("Bar" "Foo" (mc-demix "replay"))))

This makes "Bar" a chain of three remailers, and guarantees that the last one ("replay")
will be used in compatibility mode.

Note that Mixmaster remailers cannot be used for response blocks. Mailcrypt will ignore
the mix property when generating a response block.

Chapter 3: Remailer Support 13

3.9 Mixmaster and Mixminion

Mailcrypt now contains preliminary support for the modern mixmaster client, as well as
the experimental mixminion client. This support is accessed through the mc-remailer-

scheme-mixmaster and mc-remailer-scheme-mixminion scheme settings.

Both of these clients operate in a mode where the completely absorb the message body.
When run, they accept the text on stdin, decide upon a remailer chain, construct the
message packets, then transmit the packets directly. Unlike the type1 (and older mixmaster)
interface, once these client programs finish, the message has been sent and the user’s MUA
buffer is no longer needed. Note, in particular, that this bypasses the MUA’s “send”
command.

To make sure that the user does not accidentally use the MUA mode to send the mes-
sage (non-anonymously), Mailcrypt will attempt to erase the message buffer and To: header.
Some MUA modes may also have support code which will delete the message buffer alto-
gether.

Mailcrypt will also ask “Do you really want to send this message” before running the
client program. This is your last chance to avoid sending the message.

The modern client programs are designed to convey message bodies, not the headers-
plus-body that usually make up an email message. Email headers, even with the obvious
ones like From: and Message-Id: stripped out, are too likely to leak information, making it
possible for the message recipient to figure out who sent the message. Any extra information
about the kind of system used to construct the message serves to reduce the “anonymity
set”, the set of possible message senders. A smaller anonymity set means less anonymity.

The client programs have command-line arguments to add certain headers (like Subject:)
back into the message. Different clients (and different versions of the same client) offer
different options. Where possible, Mailcrypt will take the headers from your message and
pass them to the remailer client program. Note that most clients only allow a single recipient
to be named.

Mailcrypt support for modern remailer clients is still preliminary. It does not yet provide
control over several options offered by the clients. Features not useable include:

Mixmaster
Newsgroup-posting

Nym support

Automatic sign/encrypt

reply-chain generation

file attachments

Mixminion
reply block generation

In addition, both clients offer ways to influence the chain of remailers to use for the
message. Mailcrypt does not currently offer a way to access this control: messages will be
sent using the default client settings (which usually means a chain of four reliable hops).

Chapter 3: Remailer Support 14

3.10 Remailer Security

Keep in mind that there is only one person fully qualified to protect your privacy: you. You
are responsible for obtaining a list of remailers and their public keys; you are responsible
for choosing which of them to use and in what order. There are public lists of remailers
and keys (the Quick Start section above relies on them), but you pay for the convenience
by putting your trust in a single source. This is one reason Mailcrypt does not access these
public lists automatically; you need to get into the habit of watching what goes on behind
the scenes. You should also try to learn something about the remailers themselves, since
you are relying on them to help protect your privacy.

How many remailers should you include in your chain, and how should you choose them?
That depends on whom you perceive as a threat. If the threat is your ex-spouse or your boss,
even a single remailer is probably adequate (more won’t hurt, but will cost in latency). If
the threat is the Church of Scientology, you probably want to use a fair number of remailers
across multiple continents. If the threat is a major world government, well, best of luck to
you.

Also, there is a huge difference between chains suitable for regular messages and chains
suitable for response blocks. Some remailers don’t even keep mail logs (at least, their
operators claim they do not), so it may be literally impossible to trace a message back to
you after the fact if you chain it through enough remailers. Response blocks, on the other
hand, have your identity buried in there somewhere. In principle, at least, it is possible
to compromise the keys of all the remailers in the chain and decrypt the response block.
So you should either use very long and strong chains for your response blocks, avoid using
response blocks at all, or only use response blocks which themselves ultimately point to a
newsgroup.

3.11 Verifiable Pseudonyms

Here is a plausible sequence of operations when using the remailer support in Mailcrypt:

1. You create a public/private PGP key pair. You give it a User ID which is your
pseudonym. You upload the public key to the key servers or otherwise distribute
it. (Be aware that anyone who compromises your account can read the IDs on your
secret keyring, thus discovering your verifiable pseudonyms.)

2. You compose an Email message, Email reply, news post, or news followup.

3. You insert your pseudonym with C-c / p.

4. (Optional) You insert your response block with C-c / b.

5. You type C-c / s to sign the message. The mc-sign function understands pseudonyms.

6. You type C-c / r to rewrite the message for remailing. (Or use C-u C-c / r to view
each step of the rewriting as it happens.)

7. You type C-c C-c to send the message.

Now the recipient(s), reading your message through mail or news, can verify your
pseudonymous signature; thus you have started to create a verifiable pseudonymous iden-
tity. If you use it consistently, it will develop a reputation of its own. With Mailcrypt,
using a pseudonym is almost as easy as using your real name (and your followups in news
will even thread properly). Welcome to the new age of letters. . .

Chapter 4: Passphrase Cache 15

3.12 Remailer Tips

This is a collection of tips for using Mailcrypt’s remailer support.

• Read and understand the .remailers file. Do a web search for “anonymous
remailer list”, ask around in news:alt.privacy.anon-server, or, as a last resort,
news:alt.security.pgp. Check the documentation (C-h v) for the variable
mc-levien-file-name for a description of Levien format.

• Mailcrypt needs to be able to encrypt a message to each remailer in the chain, so it
needs access to their public keys, in a keyring usable by the currently selected backend.
Keyrings containing keys for all the well-known remailers are usually available from the
same places as the remailer lists.

• The relevant remailer properties are pgp (required), hash (required if you use hashmark
headers), and post (required for posting to USENET). Remailers which do not support
PGP won’t even show up in the completion list.

• The only remailer which needs special properties (e.g., posting, hashmarks, pseudonym
support) is the last one in a chain. Any remailer can be used at the beginning or in the
middle. So if you find a few remailers which support the feature(s) you require, and
you always use them at the end of your chains, then you can be confident that even
the longest chains will work.

• If you update your ~/.remailers file, you can reread it with M-x mc-reread-levien-

file.

• Remember the natural order of operations. First you compose your message. Then
you insert your pseudonym with C-c / p. Then you insert your response block with
C-c / b. Then you sign (C-c / s) or sign and encrypt (C-c / e) the message. Then
you rewrite it for a remailer or chain (C-c / r). Then you send it. All but the first and
last two of these are optional. (Well, strictly speaking, they are all optional, but you
get the idea.)

• Find and read some of the excellent remailer documentation available on the Internet.
For some good starting points, see Chapter 9 [References], page 21.

4 Passphrase Cache

Mailcrypt can remember your passphrase so that you need not type it repeatedly. It will
also "forget" your passphrase if it has not been used in a while, thus trading some security
for some convenience. You can tune this tradeoff with the variable mc-passwd-timeout,
which is a duration in seconds from the last time the passphrase was used until Mailcrypt
will forget it. The default value is 60 seconds.

So, for example, to make Mailcrypt remember your passphrase for 10 minutes after each
use, you would use the following line in your .emacs file:

(setq mc-passwd-timeout 600)

A value of nil or 0 will disable passphrase caching completely. This provides some
increase in security, but be aware that you are already playing a dangerous game by typing
your passphrase at a Lisp interpreter.

Mailcrypt understands multiple secret keys with distinct passphrases.

16

To manually force Mailcrypt to forget your passphrase(s), use the function
mc-deactivate-passwd. Both mc-read-mode and mc-write-mode bind this function to
C-c / f by default.

Warning: Although Mailcrypt takes pains to overwrite your passphrase when
"forgetting", it cannot prevent the Emacs garbage collector from possibly leav-
ing copies elsewhere in memory. Also, your last 100 keystrokes can always be
viewed with the function view-lossage, normally bound to C-h l. So be sure
to type at least 100 characters after typing your passphrase if you plan to leave
your terminal unattended.

5 Key Fetching

Mailcrypt knows how to fetch PGP public keys from the key servers (see Section 9.2
[Key Servers], page 22). The function mc-fetch-key is bound by default to C-c / k in
both mc-read-mode and mc-write-mode. Additionally, mc-encrypt, mc-decrypt, and
mc-verify will offer to call this function to automatically fetch a desired key. If you call it
manually, it will prompt you for the User ID of the key to fetch.

The variable mc-pgp-fetch-methods is a list of ways to attempt to fetch a key. (More
precisely, it is a list of functions to be called, each of which will attempt to fetch the key.)
The methods will be tried in the order listed. The default list is:

’(mc-pgp-fetch-from-keyrings

mc-pgp-fetch-from-finger

mc-pgp-fetch-from-http)

For a description of these functions, see the following sections.

If you are not directly on the Internet, you probably want to obtain a copy of the global
public key ring from the keyservers, install it somewhere under the name public-keys.pgp,
and do:

(setq mc-pgp-fetch-methods ’(mc-pgp-fetch-from-keyrings))

(setq mc-pgp-fetch-keyring-list ’("/blah/blah/blah/public-keys.pgp"))

This will allow you to fetch keys from your local copy of the global key ring instead
of sending requests to the key servers directly (see Section 5.1 [Keyring Fetch], page 17).
Alternately, if your organization has a proxy HTTP server, you can configure Mailcrypt to
use that. See Section 5.3 [HTTP Fetch], page 17.

If the key is found, you will be shown the result of running PGP on it locally. This allows
you to inspect the signatures on the key relative to your own keyring before you consent
to having it added. Inspect the signatures carefully! Key distribution is often the Achilles’
heel of public key protocols. If you blindly use keys obtained from the key servers, you are
asking for trouble.

All of the methods use mc-pgp-fetch-timeout as a timeout in seconds; the default
value is 30.

Chapter 5: Key Fetching 17

5.1 Keyring Fetch

The function mc-pgp-fetch-from-keyrings will attempt to fetch a key from a set of
keyrings on the locally accessible filesystem. This is useful if your organization maintains
a large common public keyring whose entire contents you do not wish to duplicate on your
own ring. It is also useful if you download a copy of the global public ring from the key
servers (see Section 9.2 [Key Servers], page 22).

The variable mc-pgp-fetch-keyring-list controls this behavior. It is a list of file
names of public keyrings which this function will search, in order, when seeking a key. The
default value is nil, meaning this search will always fail.

5.2 Finger Fetch

The function mc-pgp-fetch-from-finger will attempt to fetch a key by fingering an ad-
dress and parsing the output for a PGP public key block.

5.3 HTTP Fetch

The function mc-pgp-fetch-from-http will attempt to fetch a key by connecting to a key
server (see Section 9.2 [Key Servers], page 22) which has a World Wide Web interface.

The variables mc-pgp-keyserver-address, mc-pgp-keyserver-port, and mc-pgp-

keyserver-url-template control the fetching process. The default is to use Brian
LaMacchia’s key server at MIT. If this default should stop working, or if you want to help
with network congestion and machine load, you can choose a different server. As of this
writing, any of the following sequences of Emacs Lisp in your .emacs file will work; choose
one:

;; Key server at MIT (Massachusetts, USA)

;; This is the default; these lines are only for reference

;(setq mc-pgp-keyserver-address "pgp.ai.mit.edu")

;(setq mc-pgp-keyserver-port 80)

;(setq mc-pgp-keyserver-url-template

; "/htbin/pks-extract-key.pl?op=get&search=%s")

;; Key server at UPC (Barcelona, Spain)

(setq mc-pgp-keyserver-address "goliat.upc.es")

(setq mc-pgp-keyserver-port 80)

(setq mc-pgp-keyserver-url-template

"/cgi-bin/pks-extract-key.pl?op=get&search=%s")

;; Key server at Cambridge University (Cambridge, England)

(setq mc-pgp-keyserver-address "www.cl.cam.ac.uk")

(setq mc-pgp-keyserver-port 80)

(setq mc-pgp-keyserver-url-template

"/cgi-bin/pks-extract-key.pl?op=get&search=%s")

;; Key server at UIT (Tromso, Norway)

(setq mc-pgp-keyserver-address "www.service.uit.no")

(setq mc-pgp-keyserver-port 80)

(setq mc-pgp-keyserver-url-template

Chapter 5: Key Fetching 18

"/cgi-bin/pks-extract-key.pl?op=get&search=%s")

;; Key server at CMU (Pennsylvania, USA)

(setq mc-pgp-keyserver-address "gs211.sp.cs.cmu.edu")

(setq mc-pgp-keyserver-port 80)

(setq mc-pgp-keyserver-url-template "/cgi-bin/pgp-key?pgpid=%s")

If your organization has a firewall, you might not be able to access the World Wide Web
directly. Your organization may have a proxy HTTP server set up, however. In that case,
you should place code like the following in your .emacs file. You can use any of the above
key servers instead of the one at MIT, of course.

;; Mailcrypt configuration for accessing key server through HTTP proxy

(setq mc-pgp-keyserver-address "your.proxy.com")

(setq mc-pgp-keyserver-port 13013) ; Your proxy’s port

(setq mc-pgp-keyserver-url-template

"http://pgp.ai.mit.edu/htbin/pks-extract-key.pl?op=get&search=%s")

Note that fetching from a key server can be somewhat slow, so be patient. (At least it
beats the tar out of the Email interface.)

5.4 GnuPG Fetch

GnuPG happens to have a built-in HKP keyserver interface which is completely independent
from MailCrypt’s own key fetching support. If your .gnupg/gpg.conf (.gnupg/options
for older versions) file includes a line like:

‘keyserver wwwkeys.pgp.net’

then any operation that needs an otherwise-unavailable public key (which generally
means signature verification) will automatically contact the keyserver and try to retrieve
the key. It sends the hex keyid to the server, not a string, so it could only be used at
encryption time if you already know the keyid of your recipients.

You can also tell GPG to explicitly request a key (by hex keyid) with ‘--recv-keys’, or
to send your own key with ‘--send-keys’. Check the GnuPG manual for details.

It is also possible to fetch keys with mc-fetch-key, although its behaviour is a bit differ-
ent from the one described in the pgp section, if mc-default-scheme is set to ’mc-scheme-

gpg. When called interactively, it will prompt for a key ID to fetch from a keyserver. You
can either set the server to query with

;; Key server at DFN (Germany)

;; You should choose another one in your region.

(setq mc-gpg-keyserver "blackhole.pca.dfn.de")

in your .emacs file or let GPG use its default defined in its configuration file. Every
string that can be passed to the gpg ‘--keyserver’ option is allowed for mc-gpg-keyserver.
At the moment it is not possible to pass a search string to the function. Please use the
‘--search-key’ command option if you have a newer version of gpg. Maybe someday we
will write a frontend for this.

If you want to finger a key from a server use the mc-gpg-fetch-from-finger function.
It expects an input of the form ‘USER@HOST’. The variable mc-gpg-finger-timeout defines
the timeout in seconds for the operation.

19

6 Miscellaneous Configuration

This chapter documents some additional Mailcrypt configuration options which could not
be naturally described elsewhere.

6.1 Alternate Keyring

By default, Mailcrypt will use the same public keyring that PGP would use if executed from
the shell.

You can cause Mailcrypt to use a specific public keyring by setting the variable mc-pgp-
alternate-keyring. If this variable is set, Mailcrypt will use that keyring for all functions
which would otherwise have used the default. This includes adding keys, extracting keys,
verifying signatures, and encrypting messages.

This feature might be useful if you maintain multiple keyrings; you can switch between
them by setting this variable. Depending on your tastes, you might want to configure
fetching from a keyring as well (see Section 5.1 [Keyring Fetch], page 17).

6.2 Comment Field

By default, Mailcrypt will supply a "comment" option to PGP, resulting in output which
looks something like this:

----- BEGIN PGP FOOBAR -----

Version: 2.6.3

Comment: Processed by Mailcrypt 3.5.9, an Emacs/PGP interface

...

----- END PGP FOOBAR -----

To change the comment to one of your own, set the variable mc-pgp-comment. Set it
to nil to use PGP’s default, which is probably either no comment or something defined in
config.txt. mc-pgp50-comment and mc-gpg-comment are the corresponding variables for
the other versions.

6.3 Mode Line

mc-read-mode and mc-write-mode will each indicate they are active by placing the string
‘MC-r’ or ‘MC-w’ in the mode line, respectively.

You can change these strings by setting the variables mc-read-mode-string and
mc-write-mode-string. So, for example, to get rid of the mode indicators entirely, you
might put the following lines into your .emacs file:

(setq mc-read-mode-string "")

(setq mc-write-mode-string "")

6.4 Key Bindings

The Mailcrypt key bindings are defined by the keymaps mc-read-mode-map and mc-write-

mode-map. To change the key bindings, you just need to set these variables in your .emacs
file.

Chapter 7: Tips 20

For example, if you wanted C-c C-m to be the Mailcrypt prefix (instead of C-c /) in
mc-read-mode, you would put the following code in your .emacs file:

(setq mc-read-mode-map (make-sparse-keymap))

(define-key mc-read-mode-map "\C-c\C-mf" ’mc-deactivate-passwd)

(define-key mc-read-mode-map "\C-c\C-md" ’mc-decrypt)

(define-key mc-read-mode-map "\C-c\C-mv" ’mc-verify)

(define-key mc-read-mode-map "\C-c\C-ma" ’mc-snarf)

(define-key mc-read-mode-map "\C-c\C-mk" ’mc-fetch-key)

For more information on Emacs key bindings, see Section “Customizing Key Bindings”
in The GNU Emacs Manual.

6.5 Nonstandard Paths

The information in this section should be unnecessary, but is provided "just in case".

Mailcrypt will look for the PGP executable in your standard search path under the name
pgp. To use a different name (or to provide a complete path), set the variable mc-pgp-path.

PGP 5.0 includes four separate executables, usually installed as "pgpe", "pgps", "pgpv",
and "pgpk". The variables mc-pgp50-pgpe-path, mc-pgp50-pgps-path, mc-pgp50-pgpv-
path, and mc-pgp50-pgpk-path tell Mailcrypt where to find them if they are not on your
search path.

GnuPG is normally installed as "gpg". mc-gpg-path tells Mailcrypt where to find the
executable if it is not on your path.

In order to keep your identities straight, Mailcrypt needs to know where your secret
keyring resides.

Mailcrypt figures this out heuristically by assuming that the file secring.pgp is in the
same directory as your public key ring. It determines the location of the latter by doing a
dry run of PGP with ‘+verbose=1’ and parsing the output.

If this heuristic is failing for you, you can manually tell Mailcrypt where your secret key
ring is by setting the variable mc-pgp-keydir, like this:

(setq mc-pgp-keydir "/users/patl/.pgp/")

Note that the trailing slash is required.

If the heuristic fails, please report it as a bug (see Chapter 10 [Credits], page 24).

Note that if you have changed the default location of your secret keyring, Mailcrypt will
be unable to locate it. You can work around this by either setting mc-pgp-keydir, or by
making a symbolic link to your secret keyring from secring.pgp in your default public
keyring directory.

7 Tips

Here are some random tips.

• PGP provides quite good security when used correctly. You are far more likely to use
it correctly if you have read the directions. Read the PGP User’s Guide!

Chapter 9: References 21

• 60 seconds is a relatively safe but somewhat inconvenient value for mc-passwd-timeout.
If your paranoia permits, consider increasing it to five or ten minutes (see Chapter 4
[Passphrase Cache], page 15).

• If Mailcrypt ever does something you wish it had not, DON’T PANIC. Just use the
normal Emacs undo command, M-x undo or C-x u, to restore your buffer (see Section
“Undoing Changes” in The GNU Emacs Manual). Mailcrypt keeps almost no state
except what you see in your buffer, so any action can be undone this way.

• All Mailcrypt operations place PGP’s output in the *MailCrypt* buffer. Check it
occasionally for status and warning messages.

• Add yourself to the Mailcrypt announcements mailing list (see Section 9.3 [Mailing
List], page 23). That way you can find out about new versions of Mailcrypt automati-
cally, and we can enjoy the feeling that people are actually using our package.

8 Limitations

Mailcrypt is a powerful program, but it is not a complete PGP interface. Perhaps some
future version will be; in the meantime, you will need to use the command-line interface for
some operations. Things which the current version does not support include:

Complete Key Management
Mailcrypt’s key management support is limited to adding and extracting keys
from keyrings. It does not support key generation, key removal, key revocation,
ID and trust parameter editing, or key signing. It also ignores PGP’s warnings
when you use a key which is not fully certified. (Of course, you can see these
warnings by viewing the *MailCrypt* buffer; see Chapter 7 [Tips], page 20.)

Encryption with Conventional Cryptography
Mailcrypt supports decryption but not encryption with "conventional" (i.e.,
non-public key) cryptography.

Detached Signatures
Mailcrypt does not support the creation nor the verification of detached signa-
tures.

"For your eyes only" Decryption
Mailcrypt will be unable to decrypt a file which was encrypted with the "for
your eyes only" (‘-m’) option. This is actually a bug in PGP, which provides
no portable way to avoid its paging behavior.

9 References

This chapter contains information and pointers to information about topics related to PGP
and Mailcrypt.

Chapter 9: References 22

9.1 Online Resources

http://sourceforge.net/users/patl

"Mailcrypt: An Emacs/PGP Interface", by Patrick J. LoPresti. The author of
original Mailcrypt.

http://world.std.com/~franl/crypto.html

"Cryptography Web Sites, Publications, FAQs, and References", by Fran Lit-
terio. This page is simply excellent. It makes all the other References in this
chapter redundant, but we will include them anyway for redundancy.

http://www.faqs.org/faqs/by-newsgroup/alt/alt.security.pgp.html

This is a site for the alt.security.pgp FAQ lists.

news:alt.security.pgp

The alt.security.pgp newsgroup is a good place to go for discussion about
PGP, as well as any topic which any fool anywhere ever thinks is related to
PGP. It is also a good last resort for getting answers to questions, but please
read the FAQ lists first.

http://www.farcaster.com/

Brian LaMacchia put together a World Wide Web interface to the public key
servers (see Section 9.2 [Key Servers], page 22). Mailcrypt uses this interface
by default when attempting to fetch keys via HTTP (see Section 5.3 [HTTP
Fetch], page 17); most people get to his interface through this page.

ftp://ftp.csua.berkeley.edu/pub/cypherpunks/Home.html

The Cypherpunks are dedicated to taking proactive measures to ensure privacy
in the digital age. They wrote the software for, and operate many of, the
anonymous remailers currently in existence.

http://www.advogato.org/person/raph/

Raph Levien (raph.levien at gmail.com) previously maintained a remailer list. If
you are impressed by how easy it is to configure Mailcrypt’s remailer functions,
Raph is the one to thank.

http://en.wikipedia.org/wiki/Lance_Cottrell

Lance Cottrell is the author of Mixmaster.

http://www.gnupg.org/

Homepage for the GNU Privacy Guard. This is a GPL-ed replacement for PGP.

9.2 Key Servers

Key servers are machines with a publicly accessible interface to an enormous global public
keyring. Anyone may add keys to or query this keyring. Each key server holds a complete
copy of the global keyring, and they arrange to keep one another informed of additions they
receive.

This means you can tell any key server to add your public key to the global keyring, and
all of the other servers will know about it within a day or so. Then anyone will be able to
query any key server to obtain your public key.

Chapter 9: References 23

To add your key to the keyservers, send an Email message to pgp-public-

keys@pgp.ai.mit.edu with a subject line of ‘ADD’ and a body containing your public key
block. With Mailcrypt installed, you can just type C-c / x to insert your public key block
(see Section 2.3 [Inserting Keys], page 5) into the body of the message.

For help with the Email interface to the key servers, send a message with a subject line
of ‘HELP’. For a World Wide Web interface to the key servers, see Brian LaMacchia’s home
page at http://www-swiss.ai.mit.edu/~bal/.

Some other key servers include:

• pgp-public-keys@jpunix.com

• pgp-public-keys@kub.nl

• pgp-public-keys@uit.no

• pgp-public-keys@pgp.ox.ac.uk

For a complete list, consult any good online repository of PGP information (see
Section 9.1 [Online Resources], page 22).

It is strongly recommended that you submit your key to the key servers, since many
humans and programs (including Mailcrypt) may look for it there. Besides, it takes mere
seconds and the pain passes quickly.

9.3 Mailing List

New releases of Mailcrypt are announced on the SourceForge mailing lists. They are where
discussion about bugs and new features take place.

Please see http://mailcrypt.sourceforge.net/ for subscription instructions and
archives.

9.4 Politics

Cryptography in general, PGP in particular, and free software are politically somewhat
controversial topics. Heck, in the U.S. Congress, freedom of speech is a controversial topic.
Anyway, here are some organizations you should definitely watch and preferably send lots
of money.

The Electronic Frontier Foundation
The EFF (http://www.eff.org/) works to protect civil liberties in
cyberspace. They also maintain an impressive collection of on-line resources.
If you like Mailcrypt so much that you wish you had paid for it, this is the
number one place we would want to see your money go. The EFF newsgroups,
comp.org.eff.news and comp.org.eff.talk, are required reading for the
well-informed.

The League for Programming Freedom
The LPF (http://www.lpf.org/) works to fight software patents, which
threaten to make free software like Mailcrypt impossible.

The Center for Democracy and Technology
The CDT (http://www.cdt.org/) has essentially the same goals as the EFF,
but is more of a lobbying group.

24

Mailcrypt’s remailer support was inspired by the Communications Decency Act of 1995
(see http://www.cdt.org/speech/cda/ and http://wikipedia.org/wiki/Communications_
Decency_Act) and by the International "Church" of Scientology (see http://wikipedia.org/wiki/Church_
of_Scientology).

10 Credits

Mailcrypt was written by Jin Choi (jin@atype.com) and Pat LoPresti (patl@lcs.mit.edu).
PGP 5 support was added by Len Budney. GnuPG, modern mixmaster, and mixminion
support were added by Brian Warner.

Mailcrypt is hosted on SourceForge, at http://mailcrypt.sourceforge.net/. Please
send us your bug reports and comments. Also see Section 9.3 [Mailing List], page 23.

This documentation was mostly written by Pat LoPresti, but borrows heavily from an
earlier version by Hal Abelson (hal@mit.edu).

Mailcrypt would not be as robust nor as featureful if it were not for our outstanding set
of Beta testers:

• Samuel Tardieu <sam@inf.enst.fr>

• Richard Stanton <stanton@haas.berkeley.edu>

• Peter Arius <arius@immd2.informatik.uni-erlangen.de>

• Tomaz Borstnar <tomaz@cmir.arnes.si>

• Barry Brumitt <belboz@frc2.frc.ri.cmu.edu>

• Steffen Zahn <Steffen.Zahn%robinie@sunserv.sie.siemens.co.at>

• Mike Campbell <mcampbel@offenbach.sbi.com>

• Mark Baushke <mdb@cisco.com>

• Mike Long <mike.long@analog.com>

25

Index

This index has an entry for every key sequence, function, and variable documented in this
manual.

C
C-c / a . 6
C-c / b . 10
C-c / d . 5
C-c / e . 4
C-c / f . 15
C-c / k . 16
C-c / p . 11
C-c / r . 9
C-c / s . 4
C-c / v . 6
C-c / x . 5

M
mc-always-replace . 5
mc-deactivate-passwd . 15
mc-decrypt . 5
mc-default-remailer-scheme 8
mc-demix . 12
mc-encrypt . 4
mc-encrypt-for-me . 4
mc-fetch-key . 16
mc-gpg-comment . 19
mc-gpg-path . 20
mc-insert-public-key . 5
mc-install-read-mode . 3
mc-install-write-mode . 3
mc-levien-file-name . 15
mc-mixmaster-list-path . 12
mc-mixmaster-path . 12
mc-passwd-timeout . 15
mc-pgp-alternate-keyring . 19
mc-pgp-always-sign . 4
mc-pgp-comment . 19
mc-pgp-fetch-from-finger . 17

mc-pgp-fetch-from-http . 17
mc-pgp-fetch-from-keyrings 17
mc-pgp-fetch-keyring-list 17
mc-pgp-fetch-methods . 16
mc-pgp-keydir . 20
mc-pgp-keyserver-address . 17
mc-pgp-keyserver-port . 17
mc-pgp-keyserver-url-template 17
mc-pgp-path . 20
mc-pgp-user-id . 5
mc-pgp50-comment . 19
mc-pgp50-pgpe-path . 20
mc-pgp50-pgpk-path . 20
mc-pgp50-pgps-path . 20
mc-pgp50-pgpv-path . 20
mc-post-encryption-hook . 4
mc-post-signature-hook . 4
mc-pre-encryption-hook . 4
mc-pre-signature-hook . 4
mc-read-mode . 3
mc-read-mode-map . 19
mc-read-mode-string . 19
mc-remail . 9
mc-remailer-encrypt-for-chain 9
mc-remailer-internal-chains 10
mc-remailer-preserved-headers 11
mc-remailer-pseudonyms . 11
mc-remailer-user-chains . 9
mc-reread-levien-file . 15
mc-setversion . 3
mc-sign . 4
mc-snarf . 6
mc-verify . 6
mc-write-mode . 3
mc-write-mode-map . 19
mc-write-mode-string . 19

i

Table of Contents

1 Introduction . 1
1.1 Prerequisites . 1
1.2 Installation . 1

1.2.1 Hooking into Rmail . 2
1.2.2 Hooking into VM . 2
1.2.3 Hooking into MH-E . 2
1.2.4 Hooking into Gnus . 2
1.2.5 Hooking into Mew . 2

1.3 Command Overview . 2

2 General Use . 3
2.1 Encrypting a Message . 4
2.2 Signing a Message . 4
2.3 Inserting a Public Key Block . 5
2.4 Decrypting a message . 5
2.5 Verifying a Signature . 6
2.6 Snarfing a Key . 6

3 Remailer Support . 6
3.1 Remailer Introduction . 6
3.2 Types of Remailers . 7
3.3 Remailer Quick Start . 8
3.4 Remailer Chains . 9
3.5 Response Blocks . 10
3.6 Pseudonyms . 11
3.7 Remailing Posts . 11
3.8 Mixmaster Support . 12
3.9 Mixmaster and Mixminion . 13
3.10 Remailer Security . 14
3.11 Verifiable Pseudonyms . 14
3.12 Remailer Tips . 15

4 Passphrase Cache . 15

5 Key Fetching . 16
5.1 Keyring Fetch . 17
5.2 Finger Fetch . 17
5.3 HTTP Fetch . 17
5.4 GnuPG Fetch . 18

ii

6 Miscellaneous Configuration 19
6.1 Alternate Keyring . 19
6.2 Comment Field . 19
6.3 Mode Line . 19
6.4 Key Bindings . 19
6.5 Nonstandard Paths . 20

7 Tips . 20

8 Limitations . 21

9 References . 21
9.1 Online Resources . 22
9.2 Key Servers . 22
9.3 Mailing List . 23
9.4 Politics . 23

10 Credits . 24

Index . 25

	Introduction
	Prerequisites
	Installation
	Hooking into Rmail
	Hooking into VM
	Hooking into MH-E
	Hooking into Gnus
	Hooking into Mew

	Command Overview

	General Use
	Encrypting a Message
	Signing a Message
	Inserting a Public Key Block
	Decrypting a message
	Verifying a Signature
	Snarfing a Key

	Remailer Support
	Remailer Introduction
	Types of Remailers
	Remailer Quick Start
	Remailer Chains
	Response Blocks
	Pseudonyms
	Remailing Posts
	Mixmaster Support
	Mixmaster and Mixminion
	Remailer Security
	Verifiable Pseudonyms
	Remailer Tips

	Passphrase Cache
	Key Fetching
	Keyring Fetch
	Finger Fetch
	HTTP Fetch
	GnuPG Fetch

	Miscellaneous Configuration
	Alternate Keyring
	Comment Field
	Mode Line
	Key Bindings
	Nonstandard Paths

	Tips
	Limitations
	References
	Online Resources
	Key Servers
	Mailing List
	Politics

	Credits
	Index

